He Binshuo, Huang Meng, Yu Yueyue, Meng Jiashen, Zhang Hao, Li Jianwei, Wang Xuanpeng
Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, Hainan, 572000, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
Chemistry. 2025 Jun 12;31(33):e202500880. doi: 10.1002/chem.202500880. Epub 2025 May 8.
The open-framework characteristics of Prussian blue analogs (PBAs) have been recognized as advantages for cathode application in Sodium-ion batteries (SIBs). Nevertheless, lattice distortions during charge-discharge cycles critically compromise their cyclability. Recent advancements in high-entropy design strategies have significantly improved structural stability and energy storage efficiency within functional materials. In this study, we developed the high-entropy PBAs, K Mn Cu Ni Co Fe[Fe(CN)]□·0.66HO, via a cost-effective aqueous co-precipitation method. Notably, this approach facilitates the concurrent incorporation of five transition metals (Mn, Cu, Ni, Co, and Fe), thereby establishing a stable crystalline framework. Electrochemical characterization demonstrates that the cathode achieves a specific capacity of 124.9 mAh g at 0.025 A g. At various current densities (0.025-1 A g), the cathode maintains a particular capacity retention of 62.1% during rate testing. Furthermore, the cathode exhibits exceptional cyclability preserving 78.7% capacity at 1 A g after 3000 cycles. Operando X-ray diffraction (XRD) analysis confirms the formation of a reversible solid-solution intercalation/extraction mechanism process, which prevents phase transitions and enhances cyclability. This high-entropy material holds significant potential as a cathode for SIBs, offering high specific capacity and outstanding long-term cycling stability. These superior properties position it as a competitive candidate for advanced energy storage systems.
普鲁士蓝类似物(PBAs)的开放框架特性已被认为是其在钠离子电池(SIBs)中用作阴极的优势。然而,充放电循环过程中的晶格畸变严重损害了它们的循环稳定性。高熵设计策略的最新进展显著提高了功能材料的结构稳定性和储能效率。在本研究中,我们通过一种经济高效的水相共沉淀法制备了高熵PBAs,K Mn Cu Ni Co Fe[Fe(CN)]□·0.66HO。值得注意的是,这种方法有助于同时引入五种过渡金属(Mn、Cu、Ni、Co和Fe),从而建立一个稳定的晶体框架。电化学表征表明,该阴极在0.025 A g的电流密度下实现了124.9 mAh g的比容量。在各种电流密度(0.025 - 1 A g)下,该阴极在倍率测试期间保持了62.1%的特定容量保持率。此外,该阴极表现出优异的循环稳定性,在1 A g的电流密度下经过3000次循环后仍保留78.7%的容量。原位X射线衍射(XRD)分析证实形成了可逆的固溶体嵌入/脱出机制过程,这防止了相变并提高了循环稳定性。这种高熵材料作为SIBs的阴极具有巨大潜力,具有高比容量和出色的长期循环稳定性。这些优异性能使其成为先进储能系统的有竞争力候选材料。