Suppr超能文献

运用弹性网络回归预测专科医疗患者中的合成代谢雄性类固醇兴奋剂使用情况,揭示了“患者生物护照”潜在的实验室变量。

Predicting Anabolic Androgenic Steroid Doping among Specialized Health Care Patients with Elastic Net Regression Reveals Potential Laboratory Variables for "Patient Biological Passport".

作者信息

Vauhkonen Paula Katriina, Haukka Jari, Vauhkonen Ilkka, Lindroos Katarina Mercedes, Mäyränpää Mikko Ilari

机构信息

Department of Forensic Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 63, Helsinki, FI-00014, Finland.

Finnish Institute for Health and Welfare, Forensic Medicine unit, Mannerheimintie 166, P.O. Box 30, Helsinki, FI-00271, Finland.

出版信息

Sports Med Open. 2025 May 1;11(1):46. doi: 10.1186/s40798-025-00854-5.

Abstract

BACKGROUND

Recent years have brought significant development in athlete doping use detection with the implementation of the Athlete Biological Passport (ABP). The aim of this study was to explore if similar methods could also be used to detect non-medical use of anabolic androgenic steroids (AAS) among clinical patients. For this purpose, six elastic net regression models were trained in a sample of Finnish specialized health care male patients (N = 2918; no doping = 1911, AAS doping = 1007), using different approaches to longitudinal laboratory measurements as predictive variables. The laboratory data was retrieved from the Hospital District of Helsinki and Uusimaa (HUS) data lake, and doping use status was defined by patient disclosure, recorded in digital medical record free texts. Length of observation time (e.g., time between the first and last laboratory measurement) was used as weight. Model performance was tested with holdout cross-validation.

RESULTS

All the tested models showed promising discriminative ability. The best fit was achieved by using the existence of out-of-reference range measurements of 31 laboratory parameters as predictors of AAS doping, with test data area under the receiver operating characteristic curve (AUC) of 0.757 (95% CI 0.725-0.789).

CONCLUSIONS

The findings of this preliminary study suggest that AAS doping could be detected in clinical context using real-life longitudinal laboratory data. Further model development is encouraged, with added dimensions regarding the use of different AAS substances, length of doping use, and other background data that may further increase the diagnostic accuracy of these models.

摘要

背景

近年来,随着运动员生物护照(ABP)的实施,运动员兴奋剂使用检测取得了重大进展。本研究的目的是探讨类似方法是否也可用于检测临床患者中合成代谢雄激素类固醇(AAS)的非医疗使用情况。为此,在芬兰专科医疗男性患者样本(N = 2918;未使用兴奋剂 = 1911,使用AAS兴奋剂 = 1007)中训练了六个弹性网络回归模型,使用不同方法处理纵向实验室测量数据作为预测变量。实验室数据从赫尔辛基和乌西马医院区(HUS)数据湖中获取,兴奋剂使用状态由患者自述定义,并记录在数字病历的自由文本中。观察时间长度(例如,第一次和最后一次实验室测量之间的时间)用作权重。通过留出法交叉验证测试模型性能。

结果

所有测试模型均显示出有前景的判别能力。使用31个实验室参数超出参考范围测量值的存在作为AAS兴奋剂使用的预测指标时,拟合效果最佳,测试数据的受试者工作特征曲线下面积(AUC)为0.757(95% CI 0.725 - 0.789)。

结论

这项初步研究的结果表明,利用实际生活中的纵向实验室数据可以在临床环境中检测出AAS兴奋剂使用情况。鼓励进一步开展模型开发,增加有关不同AAS物质使用、兴奋剂使用时长以及其他可能进一步提高这些模型诊断准确性的背景数据等维度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验