Shim Jaehyuk, Lee Kangjae, Yu Yunjae, Lee Hyeon Seok, Shin Heejong, Lee Kug-Seung, Bootharaju Megalamane S, Han Sanghwi, Yi Gyu Seong, Ko Hyojoo, Lee Sihwa, Ryu Jaeyune, Kim Minho, Lee Byoung-Hoon, Hyeon Taeghwan, Sung Yung-Eun
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
J Am Chem Soc. 2025 May 14;147(19):16179-16188. doi: 10.1021/jacs.5c00936. Epub 2025 May 1.
Green hydrogen production via proton exchange membrane water electrolysis (PEMWE) faces economic feasibility challenges, primarily due to its reliance on noble metal catalysts. While cost-effective Ru-based catalysts show promise as alternatives to expensive Ir-based catalysts for an anodic oxygen evolution reaction, their long-term performance is compromised by overoxidation at high current densities. In addressing this challenge, we present a cooperative dual-site strategy for atomic-scale incorporation of high-valent d-metal cations into RuO. This synthesis results in uniformly distributed Ru-O-dmetal bonds, effectively reconciling the activity and stability trade-off. Leveraging these effects, our optimized Ta/RuO catalyst demonstrates exceptional performance, with a low overpotential of 164 ± 2 mV and stable operation for 1000 h at 100 mA cm. In practical PEMWE systems, Ta/RuO achieves 1.58 V at 2 A cm, surpassing the 2026 Department of Energy target, and maintains remarkable stability over 650 h at 500 mA cm. This breakthrough offers a highly active and durable PEMWE system suitable for industrial-scale applications.
通过质子交换膜水电解(PEMWE)生产绿色氢气面临经济可行性挑战,主要原因是其依赖贵金属催化剂。虽然具有成本效益的钌基催化剂有望替代昂贵的铱基催化剂用于阳极析氧反应,但其长期性能会因高电流密度下的过度氧化而受到影响。为应对这一挑战,我们提出了一种协同双位点策略,用于将高价d金属阳离子原子尺度地掺入RuO中。这种合成方法产生了均匀分布的Ru-O-d金属键,有效地平衡了活性和稳定性之间的权衡。利用这些效应,我们优化后的Ta/RuO催化剂表现出卓越的性能,过电位低至164±2 mV,在100 mA cm²下可稳定运行1000小时。在实际的PEMWE系统中,Ta/RuO在2 A cm²时达到1.58 V,超过了2026年能源部的目标,并且在500 mA cm²下650小时内保持了出色的稳定性。这一突破提供了一种适用于工业规模应用的高活性且耐用的PEMWE系统。