Suppr超能文献

达格列净,一种钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂,通过增强线粒体呼吸改善内皮细胞能量代谢。

Dapagliflozin, An SGLT2 Inhibitor, Improves Endothelial Cell Energy Metabolism Through Enhanced Mitochondrial Respiration.

作者信息

Walczak Iga, Braczko Alicja, Paterek Aleksandra, Rolski Filip, Urbanowicz Krzysztof, Tarnawska Maria, Knapczyk Roksana, Parzuchowska Aleksandra, Smoleński Ryszard T, Hellmann Marcin, Mączewski Michał, Kutryb-Zając Barbara

机构信息

Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland.

Department of Clinical Physiology, The Centre of Postgraduate Medical Education, Warsaw, Poland.

出版信息

Cell Physiol Biochem. 2025 Apr 30;59(2):235-251. doi: 10.33594/000000772.

Abstract

BACKGROUND/AIMS: Flozins (sodium-glucose cotransporter 2 inhibitors, SGLT2i) are a new class of antidiabetic drugs that reduce cardiovascular mortality and hospitalization rates in heart failure, regardless of type 2 diabetes status. Besides lowering glycemia by inhibiting renal glucose reabsorption, SGLT2 inhibitors may exert sodium-dependent hemodynamic effects and improve cardiomyocyte energy metabolism, substrate preference, and mitochondrial function. However, their impact on endothelial cells remains largely unknown. This study aimed to analyse the effects and mechanisms of SGLT2i on endothelial cell metabolism and function.

METHODS

Mouse cardiac endothelial cells (H5V) were used to test the impact of dapagliflozin on endothelial cell metabolism and function in the presence of hypoxia-mimicking conditions. The concentration of intracellular nucleotides was measured using high-performance liquid chromatography. Mitochondrial and glycolytic activity were assessed using Seahorse XFp, while nitric oxide (NO) production was determined by 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) fluorescence staining. The effects of dapagliflozin treatment on endothelial NO synthesis were also analysed in patients with chronic heart failure and left ventricular ejection fraction above 40% and C57Bl/6J mice.

RESULTS

Dapagliflozin augmented adenosine triphosphate (ATP) levels and the ATP/ADP (adenosine diphosphate) ratio in cultured endothelial cells correlated to increased NO production. Dapagliflozin-treated endothelial cells produced ATP through both mitochondrial respiration and glycolysis. Interestingly, mitochondrial respiration was enhanced, while glycolysis was unaffected in endothelial cells after in vitro dapagliflozin treatment. In a murine model, dapagliflozin doubled the rate of coronary NO synthesis and tended to improve coronary capillary density. In humans with chronic heart failure, 3-month treatment with dapagliflozin revealed many metabolic effects, suggesting potential mechanisms related to nitric oxide homeostasis, mitochondrial function, and L-arginine metabolism.

CONCLUSION

This study demonstrated the beneficial effect of dapagliflozin on endothelial cell metabolism and function. Regulation of endothelial cell bioenergetics may be an undervalued mechanism of SGLT2i to delay heart failure progression and support cardiac regeneration. These may accelerate endothelial-targeted strategies to support heart failure treatment.

摘要

背景/目的:氟唑烷类药物(钠-葡萄糖协同转运蛋白2抑制剂,SGLT2i)是一类新型抗糖尿病药物,可降低心力衰竭患者的心血管死亡率和住院率,无论其是否患有2型糖尿病。除了通过抑制肾脏葡萄糖重吸收来降低血糖外,SGLT2抑制剂还可能产生钠依赖性血流动力学效应,并改善心肌细胞能量代谢、底物偏好和线粒体功能。然而,它们对内皮细胞的影响在很大程度上仍不清楚。本研究旨在分析SGLT2i对内皮细胞代谢和功能的影响及机制。

方法

使用小鼠心脏内皮细胞(H5V)在模拟缺氧条件下测试达格列净对内皮细胞代谢和功能的影响。使用高效液相色谱法测量细胞内核苷酸的浓度。使用海马XFp评估线粒体和糖酵解活性,同时通过4-氨基-5-甲基氨基-2',7'-二氟荧光素(DAF-FM)荧光染色测定一氧化氮(NO)的产生。还在慢性心力衰竭且左心室射血分数高于40%的患者和C57Bl/6J小鼠中分析了达格列净治疗对内皮细胞NO合成的影响。

结果

达格列净提高了培养的内皮细胞中的三磷酸腺苷(ATP)水平以及ATP/二磷酸腺苷(ADP)比值,这与NO产生增加相关。经达格列净处理的内皮细胞通过线粒体呼吸和糖酵解产生ATP。有趣的是,体外达格列净处理后,内皮细胞中的线粒体呼吸增强,而糖酵解未受影响。在小鼠模型中,达格列净使冠状动脉NO合成速率加倍,并倾向于改善冠状动脉毛细血管密度。在慢性心力衰竭患者中,3个月的达格列净治疗显示出许多代谢效应,提示与一氧化氮稳态、线粒体功能和L-精氨酸代谢相关的潜在机制。

结论

本研究证明了达格列净对内皮细胞代谢和功能的有益作用。内皮细胞生物能量学的调节可能是SGLT2i延缓心力衰竭进展和支持心脏再生的一个被低估的机制。这些可能会加速以内皮细胞为靶点的策略来支持心力衰竭治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验