Goedeke Leigh, Ma Yina, Gaspar Rafael C, Nasiri Ali, Lee Jieun, Zhang Dongyan, Galsgaard Katrine Douglas, Hu Xiaoyue, Zhang Jiasheng, Guerrera Nicole, Li Xiruo, LaMoia Traci, Hubbard Brandon T, Haedersdal Sofie, Wu Xiaohong, Stack John, Dufour Sylvie, Butrico Gina Marie, Kahn Mario, Perry Rachel J, Cline Gary W, Young Lawrence H, Shulman Gerald I
Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA.
Department of Medicine (Cardiology) and The Cardiovascular Research Institute and.
J Clin Invest. 2024 Dec 16;134(24):e176708. doi: 10.1172/JCI176708.
Previous studies highlight the potential for sodium-glucose cotransporter type 2 (SGLT2) inhibitors (SGLT2i) to exert cardioprotective effects in heart failure by increasing plasma ketones and shifting myocardial fuel utilization toward ketone oxidation. However, SGLT2i have multiple in vivo effects and the differential impact of SGLT2i treatment and ketone supplementation on cardiac metabolism remains unclear. Here, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology combined with infusions of [13C6]glucose or [13C4]βOHB, we demonstrate that acute SGLT2 inhibition with dapagliflozin shifts relative rates of myocardial mitochondrial metabolism toward ketone oxidation, decreasing pyruvate oxidation with little effect on fatty acid oxidation in awake rats. Shifts in myocardial ketone oxidation persisted when plasma glucose levels were maintained. In contrast, acute βOHB infusion similarly augmented ketone oxidation, but markedly reduced fatty acid oxidation and did not alter glucose uptake or pyruvate oxidation. After inducing heart failure, dapagliflozin increased relative rates of ketone and fatty acid oxidation, but decreased pyruvate oxidation. Dapagliflozin increased mitochondrial redox and reduced myocardial oxidative stress in heart failure, which was associated with improvements in left ventricular ejection fraction after 3 weeks of treatment. Thus, SGLT2i have pleiotropic effects on systemic and heart metabolism, which are distinct from ketone supplementation and may contribute to the long-term cardioprotective benefits of SGLT2i.
先前的研究强调了2型钠-葡萄糖协同转运蛋白(SGLT2)抑制剂(SGLT2i)通过增加血浆酮体并将心肌燃料利用转向酮体氧化,从而在心力衰竭中发挥心脏保护作用的潜力。然而,SGLT2i具有多种体内效应,SGLT2i治疗和酮体补充对心脏代谢的不同影响仍不清楚。在此,我们使用气相色谱-质谱联用(GC-MS)和液相色谱-串联质谱联用(LC-MS/MS)方法,并结合输注[13C6]葡萄糖或[13C4]β-羟基丁酸(βOHB),证明在清醒大鼠中,用达格列净急性抑制SGLT2可使心肌线粒体代谢的相对速率转向酮体氧化,减少丙酮酸氧化,而对脂肪酸氧化影响不大。当维持血浆葡萄糖水平时,心肌酮体氧化的变化持续存在。相比之下,急性输注βOHB同样增加了酮体氧化,但显著降低了脂肪酸氧化,并且没有改变葡萄糖摄取或丙酮酸氧化。诱导心力衰竭后,达格列净增加了酮体和脂肪酸氧化的相对速率,但降低了丙酮酸氧化。达格列净增加了心力衰竭时线粒体的氧化还原状态并降低了心肌氧化应激,这与治疗3周后左心室射血分数的改善有关。因此,SGLT2i对全身和心脏代谢具有多效性作用,这与酮体补充不同,可能是SGLT2i长期心脏保护益处的原因。