Suppr超能文献

1,2-乙二硫醇处理的PbS量子点对短波红外光电探测器空穴传输层的尺寸效应

Size Effects of 1,2-Ethanedithiol-Treated PbS Quantum Dots on Short-Wave Infrared Photodetector Hole Transport Layers.

作者信息

Cao Tao, Chen Simin, Fang Fan, Tang Haodong, Hao Junjie, Tang Jun, Cheng Jiaji, Chen Wei

机构信息

Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China.

School of Materials Science and Engineering, Hubei University, Wuhan 518118, China.

出版信息

J Phys Chem Lett. 2025 May 15;16(19):4607-4614. doi: 10.1021/acs.jpclett.5c01032. Epub 2025 May 1.

Abstract

Colloidal quantum dots (QDs), notably lead sulfide (PbS) QDs, represent a promising platform for short-wave infrared (SWIR) photodetection, offering a cost-effective and scalable alternative to conventional indium gallium arsenide (InGaAs) systems. This study investigates the pivotal role of PbS QD size in optimizing the hole transport layer (HTL) for SWIR photodetectors, addressing the interplay among film morphology, electronic structure, and device performance. Through the precise synthesis of monodisperse PbS QDs (3.33-4.14 nm) and solid-state ligand exchange with 1,2-ethanedithiol (EDT), we reveal that smaller QDs, while benefiting from strong quantum confinement and superior electron blocking, suffer from pronounced volumetric shrinkage and microcracking due to high ligand-to-QD ratios. Conversely, larger QDs enhance film integrity but introduce surface-facet-dependent defects and increase dark current density. Combining transmission electron microscopy, absorption spectroscopy, photoluminescence quenching, and space-charge-limited current analysis, we elucidate the size-dependent trade-offs governing HTL functionality. Devices with intermediate-sized QDs (e.g., 4.04 nm) achieve peak external quantum efficiency (55.74%), responsivity (0.54 A/W), and specific detectivity (5.50 × 10 Jones), while smaller QDs (3.33 nm) excel in trap state suppression and faster response speed (1.0 μs rise and 1.3 μs fall). These findings establish a materials-by-design framework for tailoring QD size to balance mechanical stability and optoelectronic performance, advancing solution-processed SWIR imaging technologies.

摘要

胶体量子点(QDs),特别是硫化铅(PbS)量子点,是短波红外(SWIR)光电探测的一个有前景的平台,为传统的铟镓砷(InGaAs)系统提供了一种经济高效且可扩展的替代方案。本研究调查了PbS量子点尺寸在优化SWIR光电探测器空穴传输层(HTL)中的关键作用,探讨了薄膜形态、电子结构和器件性能之间的相互作用。通过精确合成单分散的PbS量子点(3.33 - 4.14 nm)并与1,2 - 乙二硫醇(EDT)进行固态配体交换,我们发现较小的量子点虽然受益于强量子限制和优异的电子阻挡能力,但由于高配体与量子点比例而遭受明显的体积收缩和微裂纹。相反,较大的量子点增强了薄膜完整性,但引入了表面面依赖的缺陷并增加了暗电流密度。结合透射电子显微镜、吸收光谱、光致发光猝灭和空间电荷限制电流分析,我们阐明了控制HTL功能的尺寸依赖性权衡。具有中等尺寸量子点(例如4.04 nm)的器件实现了峰值外量子效率(55.74%)、响应度(0.54 A/W)和比探测率(5.50×10琼斯),而较小的量子点(3.33 nm)在陷阱态抑制和更快的响应速度(上升1.0 μs,下降1.3 μs)方面表现出色。这些发现建立了一个按设计材料的框架,用于调整量子点尺寸以平衡机械稳定性和光电性能,推动溶液处理的SWIR成像技术发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验