Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Nano Lett. 2023 May 24;23(10):4298-4303. doi: 10.1021/acs.nanolett.3c00491. Epub 2023 May 11.
Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL materials exhibit low carrier mobility, limiting the photodiode response speed. We develop instead inverted (p-i-n) SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL, ultimately enabling 4× shorter fall times in photodiodes (∼800 ns for EDT and ∼200 ns for NiOx). Optoelectronic simulations reveal that the high carrier mobility of NiOx enhances the electric field in the active layer, decreasing the overall transport time and increasing photodetector response time.
溶液处理胶体量子点(CQDs)是在短波长红外(SWIR)区域运行的光探测器的有前途的材料。器件通常依赖于基于 CQD 的空穴传输层(HTL),例如使用 1,2-乙二硫醇处理的 CQD。在此,我们发现这些 HTL 材料表现出低载流子迁移率,限制了光电二极管的响应速度。我们转而开发了工作在 1370nm 的反型(p-i-n)SWIR 光电探测器,采用 NiOx 作为 HTL,最终使光电二极管的下降时间缩短了 4 倍(EDT 约为 800ns,NiOx 约为 200ns)。光电模拟表明,NiOx 的高载流子迁移率增强了有源层中的电场,从而缩短了整体传输时间并提高了光电探测器的响应时间。