Dujardin Chloé, Habeler Walter, Aprile Paola, Dellaquila Alessandra, Monville Christelle, Letourneur Didier, Simon-Yarza Teresa
Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France; I-Stem, CECS, Corbeil-Essonnes, 91100, France.
Biomaterials. 2025 Nov;322:123357. doi: 10.1016/j.biomaterials.2025.123357. Epub 2025 Apr 23.
The outer blood-retinal barrier (oBRB) is compromised in several retinal pathologies, such as age-related macular degeneration affecting over 200 million people worldwide. This 200-350 μm thick tissue includes the retinal pigment epithelium (RPE), the Bruch's membrane, and the vascularized choroid supplying the outer retina. Degeneration of the RPE and/or choroid leads to photoreceptor loss and, ultimately, blindness. Current in vitro co-culture oBRB models developed to better understand the diseases and to propose therapeutic alternatives are often simplistic, focusing on 2D cultures, or face limitations including non-physiological dimensions or low throughput. This study presents an innovative scaffold-driven approach to model the oBRB using a polysaccharide membrane engineered by freeze-drying. Our specific protocol allowed to mimic the oBRB structure, within physiological dimensions, generating a non-porous surface to culture the hiPSC-derived RPE monolayer, and an internal 3D porous structure for the choroidal network. Results showed that the inner porous structure promoted physiological self-organization of endothelial cells and pericytes. Our single-piece functional material allowed the cultivation of both RPE and choroidal compartments in close proximity, favoring cellular interactions, while maintaining them in their designated locations. This cyto-compatible, easy-to-use, and off-the-shelf membrane, produced at large amounts and low costs, provides a physiologically relevant biomaterial for oBRB tissue modelling.
外血视网膜屏障(oBRB)在多种视网膜病变中会受到损害,例如年龄相关性黄斑变性,全球有超过2亿人受其影响。这种厚度为200 - 350微米的组织包括视网膜色素上皮(RPE)、布鲁赫膜以及为视网膜外层供血的血管化脉络膜。RPE和/或脉络膜的退化会导致光感受器丧失,最终导致失明。目前为更好地理解这些疾病并提出治疗方案而开发的体外共培养oBRB模型往往过于简单,侧重于二维培养,或者面临包括非生理尺寸或低通量等局限性。本研究提出了一种创新的支架驱动方法,使用通过冷冻干燥工程化的多糖膜来模拟oBRB。我们的特定方案能够在生理尺寸范围内模拟oBRB结构,生成一个无孔表面来培养人诱导多能干细胞衍生的RPE单层,以及一个用于脉络膜网络的内部三维多孔结构。结果表明,内部多孔结构促进了内皮细胞和周细胞的生理性自组织。我们的一体式功能材料允许在紧密相邻的位置培养RPE和脉络膜隔室,有利于细胞间相互作用,同时将它们维持在指定位置。这种具有细胞相容性、易于使用且现成可用的膜,能够大量且低成本地生产,为oBRB组织建模提供了一种生理相关的生物材料。