Suppr超能文献

从基因到表型:牛肉品质的多层次组学技术综述

From genes to phenotypes: A review of multilevel omics techniques in beef quality.

作者信息

Gao Lutao, Zhang Lilian, Chen Jian, Peng Lin, Guo Lujiale, Yang Linnan

机构信息

College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China; College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, China; Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, Yunnan, China; Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, Yunnan, China.

College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, China; Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, Yunnan, China; Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, Yunnan, China.

出版信息

Gene. 2025 Apr 29;962:149416. doi: 10.1016/j.gene.2025.149416.

Abstract

Beef quality is a crucial factor affecting both consumer preferences and the economic efficiency of the industry. With the rapid advancements in high-throughput technologies, including genomics, transcriptomics, proteomics, and metabolomics, integrated multi-omics analysis has emerged as a new research paradigm for deeply investigating the mechanisms underlying beef quality. This review systematically summarizes recent progress in multi-omics research related to beef quality, encompassing various levels such as genomics, transcriptomics, proteomics, metabolomics, and phenomics. At the genomic level, the use of genome-wide association studies (GWAS) and genomic selection techniques has markedly improved the precision of selecting meat quality traits. Studies in transcriptomics and proteomics have identified key genes involved in muscle growth and fat deposition, along with their expression regulation networks. Metabolomics analyses have highlighted critical metabolites that influence beef flavor and tenderness, as well as their biosynthetic pathways. The integration of multi-omics data has led to the construction of a comprehensive regulatory network linking genotype to phenotype, providing a theoretical foundation for precision breeding and quality control. However, current research faces challenges such as limited sample sizes and the need for more advanced data integration methods. Future research should prioritize: (1) increasing sample sizes and conducting large-scale omics data collection across diverse breeds and environmental conditions; (2) developing sophisticated computational methods for deeper integration of multi-omics data to create more accurate quality prediction models, and (3) enhancing functional validation experiments to elucidate the roles of key genes and metabolites. This review offers a systematic perspective on the molecular mechanisms driving beef quality and is of significant importance for guiding precision breeding and quality control in the beef industry.

摘要

牛肉品质是影响消费者偏好和牛肉产业经济效率的关键因素。随着高通量技术的迅速发展,包括基因组学、转录组学、蛋白质组学和代谢组学,整合多组学分析已成为深入研究牛肉品质潜在机制的一种新的研究范式。本文综述系统总结了与牛肉品质相关的多组学研究的最新进展,涵盖了基因组学、转录组学、蛋白质组学、代谢组学和表型组学等各个层面。在基因组水平上,全基因组关联研究(GWAS)和基因组选择技术的应用显著提高了肉质性状选择的精度。转录组学和蛋白质组学研究已经确定了参与肌肉生长和脂肪沉积的关键基因及其表达调控网络。代谢组学分析突出了影响牛肉风味和嫩度的关键代谢物及其生物合成途径。多组学数据的整合导致构建了一个将基因型与表型联系起来的综合调控网络,为精准育种和质量控制提供了理论基础。然而,目前的研究面临样本量有限以及需要更先进的数据整合方法等挑战。未来的研究应优先考虑:(1)增加样本量,并在不同品种和环境条件下进行大规模组学数据收集;(2)开发复杂的计算方法,以更深入地整合多组学数据,创建更准确的品质预测模型;(3)加强功能验证实验,以阐明关键基因和代谢物的作用。本文综述为驱动牛肉品质的分子机制提供了系统的观点,对指导牛肉产业的精准育种和质量控制具有重要意义。

相似文献

5
Multi-omics study for interpretation of genome-wide association study.多组学研究用于解释全基因组关联研究。
J Hum Genet. 2021 Jan;66(1):3-10. doi: 10.1038/s10038-020-00842-5. Epub 2020 Sep 18.
6
Applications of Multi-Omics Technologies for Crop Improvement.多组学技术在作物改良中的应用
Front Plant Sci. 2021 Sep 3;12:563953. doi: 10.3389/fpls.2021.563953. eCollection 2021.
10
Multi-Omics Approaches to Improve Meat Quality and Taste Characteristics.改善肉质和风味特征的多组学方法
Food Sci Anim Resour. 2023 Nov;43(6):1067-1086. doi: 10.5851/kosfa.2023.e63. Epub 2023 Nov 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验