Liu Kai, Wang Xiaojia, Wang Jingyi, Wang Shuman, Bai Haiyan, Dong Weiguo, Qiao Lulu, Jin Qiongli, Zhang Zhonghui, Luo Guan-Zheng, Wang Zhiye
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China.
Nat Commun. 2025 May 1;16(1):4093. doi: 10.1038/s41467-025-59331-y.
N-methyladenosine (mA), an abundant internal mRNA modification, is induced by various stress conditions and post-transcriptionally regulates gene expression. However, how mA modifications help plants respond to nutrient-deficiency stress remains unclear. Here, we profile high-confidence mA modifications in Arabidopsis transcriptome-wide under normal and inorganic orthophosphate (Pi)-deficient conditions (-P). High-confidence mA modifications are identified using synthetic modification-free RNA libraries for systematic calibration. Pi starvation induces widespread mA modifications, mediated by the Pi starvation response (PSR) master regulator PHOSPHATE STARVATION RESPONSE1 (PHR1) and its family members. Many Pi starvation-induced (PSI) mA modifications occur on PSR-related mRNAs, including PHR1. In addition, PHR1 proteins interact with the mA writers MRNA ADENOSINE METHYLASE (MTA) and METHYLTRANSFERASE B (MTB) in nuclei under -P conditions. mA modifications facilitate systemic PSR signaling, as reflected by the reduced Pi content and PSR signaling in a knockdown artificial miRNA line targeting MTA, which shows a global decrease in mA. Transcriptome-wide mRNA decay analysis reveals that PSI-mA increases the stability of PSR-related mRNAs, but not through alternative polyadenylation site shifts. Analysis of transgenic plants with mutations in mA loci demonstrates that mA stabilizes PHR1 transcripts via a positive feedback loop. Our findings indicate that PSI-mA modifications facilitate PSR signaling by enhancing the stability of certain mRNAs, shedding light on the role of mA modifications in nutrient stress responses in plants.
N6-甲基腺苷(mA)是一种丰富的内部mRNA修饰,受多种应激条件诱导,并在转录后调节基因表达。然而,mA修饰如何帮助植物应对营养缺乏胁迫仍不清楚。在这里,我们分析了正常和无机正磷酸盐(Pi)缺乏条件(-P)下拟南芥全转录组范围内的高可信度mA修饰。使用无合成修饰的RNA文库进行系统校准,以鉴定高可信度的mA修饰。Pi饥饿诱导广泛的mA修饰,由Pi饥饿反应(PSR)主调节因子磷酸盐饥饿反应1(PHR1)及其家族成员介导。许多Pi饥饿诱导(PSI)的mA修饰发生在与PSR相关的mRNA上,包括PHR1。此外,在-P条件下,PHR1蛋白在细胞核中与mA写入器mRNA腺苷甲基转移酶(MTA)和甲基转移酶B(MTB)相互作用。mA修饰促进系统性PSR信号传导,这在靶向MTA的人工miRNA敲低株系中Pi含量降低和PSR信号传导中得到体现,该株系显示mA整体下降。全转录组mRNA衰变分析表明,PSI-mA增加了与PSR相关mRNA的稳定性,但不是通过可变聚腺苷酸化位点的转移。对mA位点突变的转基因植物的分析表明,mA通过正反馈环稳定PHR1转录本。我们的研究结果表明,PSI-mA修饰通过增强某些mRNA的稳定性促进PSR信号传导,揭示了mA修饰在植物营养胁迫反应中的作用。