Suppr超能文献

用于QoE优化和节能移动边缘系统的基于机器学习的自适应人工智能增强计算卸载

Adaptive AI-enhanced computation offloading with machine learning for QoE optimization and energy-efficient mobile edge systems.

作者信息

Nishad Dinesh Kumar, Verma Vandna Rani, Rajput Pushkar, Gupta Sandeep, Dwivedi Anurag, Shah Dharti Raj

机构信息

Department of Electrical Engineering, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, India.

Department of Computer Science and Engineering (AI), Galgotias College of Engineering & Technology (GCET), Greater Noida, India.

出版信息

Sci Rep. 2025 May 1;15(1):15263. doi: 10.1038/s41598-025-00409-4.

Abstract

Mobile Edge Computing (MEC) systems face critical challenges in optimizing computation offloading decisions while maintaining quality of experience (QoE) and energy efficiency, particularly in dynamic multi-user environments. This paper introduces a novel Adaptive AI-enhanced offloading (AAEO) framework that uniquely integrates three complementary AI approaches: deep reinforcement learning for real-time decision-making, evolutionary algorithms for global optimization, and federated learning for distributed knowledge sharing. The key innovation lies in our hybrid architecture's ability to dynamically adjust offloading strategies based on real-time network conditions, user mobility patterns, and application requirements, addressing limitations of existing single-algorithm solutions. Through extensive MATLAB simulations with 50-200 mobile users and 4-10 edge servers, our framework demonstrates superior performance compared to state-of-the-art methods. The AAEO framework achieves up to a 35% improvement in QoE and a 40% reduction in energy consumption, while maintaining stable task completion times with only a 12% increase under maximum user load. The system's security analysis yields a 98% threat detection rate, with response times under 100 ms. Meanwhile, reliability metrics indicate a 99.8% task completion rate and a mean time to failure of 1,200 h. These results validate the proposed hybrid AI approach's effectiveness in addressing the complex challenges of next-generation MEC systems, particularly in heterogeneous environments requiring real-time adaptation.

摘要

移动边缘计算(MEC)系统在优化计算卸载决策的同时保持体验质量(QoE)和能源效率方面面临着严峻挑战,尤其是在动态多用户环境中。本文介绍了一种新颖的自适应人工智能增强卸载(AAEO)框架,该框架独特地集成了三种互补的人工智能方法:用于实时决策的深度强化学习、用于全局优化的进化算法以及用于分布式知识共享的联邦学习。关键创新在于我们的混合架构能够根据实时网络状况、用户移动模式和应用需求动态调整卸载策略,解决了现有单算法解决方案的局限性。通过在50 - 200个移动用户和4 - 10个边缘服务器上进行广泛的MATLAB模拟,我们的框架展示出了优于现有方法的性能。AAEO框架在QoE方面实现了高达35%的提升,能耗降低了40%,同时在最大用户负载下任务完成时间仅增加12%的情况下保持稳定。系统的安全分析产生了98%的威胁检测率,响应时间在100毫秒以内。与此同时,可靠性指标显示任务完成率为99.8%,平均无故障时间为1200小时。这些结果验证了所提出的混合人工智能方法在应对下一代MEC系统复杂挑战方面的有效性,特别是在需要实时适应的异构环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d653/12045960/bef2b392207c/41598_2025_409_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验