Suppr超能文献

MRI2PET:基于MRI的逼真PET图像合成,用于脑萎缩和阿尔茨海默病的自动推断

MRI2PET: Realistic PET Image Synthesis from MRI for Automated Inference of Brain Atrophy and Alzheimer's.

作者信息

Theodorou Brandon, Dadu Anant, Avants Brian, Nalls Mike, Sun Jimeng, Faghri Faraz

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.

出版信息

medRxiv. 2025 Apr 25:2025.04.23.25326302. doi: 10.1101/2025.04.23.25326302.

Abstract

BACKGROUND

Positron Emission Tomography (PET) scans are a crucial tool in the diagnosing and monitoring of a number of complex conditions, including cancer, heart health, and especially cognitive brain function. However, they are also often much more expensive than comparable imaging modalities such as X-Ray and magnetic resonance imaging (MRI), which can limit their availability and the impact of their use in both medical and machine learning settings. We propose to address this problem by using generative models to simulate the PET scan results based on prior MRI.

METHODS

While recent work has yielded impressive realism in image generation, this PET synthesis task presents a series of technical challenges based on the scarcity of paired data as well as the complexity and nuance of the 3D images. So, we propose MRI2PET to generate AV45-PET scans from T1-weighted MRI images. MRI2PET is a 3D diffusion-based method which makes use of style transferred pre-training and a Laplacian pyramid loss to address these challenges by utilizing larger available unpaired MRI datasets and structural similarities between the MRI and PET images while simultaneously emphasizing the crucial details.

FINDINGS

We evaluate MRI2PET through a series of studies on the ADNI dataset where we show that it both generates realistic images and improves clinically-based disease classification. When compared to training on only the original AV45-PET data, MRI2PET augmentation increases AUROC of brain scan classification to 0.780 ± 0.005 from 0.688 ± 0.014 when classifying brain scans into one of three clinically defined groups: cognitively normal, mild cognitive impairment, and Alzheimer's Disease.

INTERPRETATION

The capability to generate high quality, clinically relevant PET scans from MRI has the potential to expand the utility of cost-effective and accessible imaging workflows and improve both image-based machine learning capabilities and patient care.

FUNDING

US National Institute on Aging, US National Institutes of Health, US National Science Foundation.

摘要

背景

正电子发射断层扫描(PET)是诊断和监测多种复杂病症的关键工具,这些病症包括癌症、心脏健康,尤其是认知脑功能。然而,与X射线和磁共振成像(MRI)等类似成像方式相比,PET扫描通常成本要高得多,这可能会限制其可用性以及在医学和机器学习环境中的使用影响力。我们建议通过使用生成模型,基于先前的MRI来模拟PET扫描结果,以解决这一问题。

方法

虽然近期的工作在图像生成方面取得了令人印象深刻的逼真效果,但由于配对数据稀缺以及三维图像的复杂性和细微差别,PET合成任务带来了一系列技术挑战。因此,我们提出了MRI2PET,用于从T1加权MRI图像生成AV45-PET扫描。MRI2PET是一种基于三维扩散的方法,它利用风格迁移预训练和拉普拉斯金字塔损失,通过利用更大的可用非配对MRI数据集以及MRI和PET图像之间的结构相似性来应对这些挑战,同时强调关键细节。

研究结果

我们通过对阿尔茨海默病神经成像计划(ADNI)数据集进行一系列研究来评估MRI2PET,结果表明它既能生成逼真的图像,又能改善基于临床的疾病分类。在将脑部扫描分为认知正常、轻度认知障碍和阿尔茨海默病这三个临床定义组之一时,与仅使用原始AV45-PET数据进行训练相比,MRI2PET增强将脑部扫描分类的受试者工作特征曲线下面积(AUROC)从0.688±0.014提高到0.780±0.005。

解读

从MRI生成高质量、临床相关PET扫描的能力有可能扩大具有成本效益且可及的成像工作流程的效用,并改善基于图像的机器学习能力和患者护理。

资金来源

美国国立衰老研究所、美国国立卫生研究院、美国国家科学基金会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8338/12045408/b4ee6897f7d9/nihpp-2025.04.23.25326302v1-f0001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验