Akram Sumera, Hussain Shabbir, Arif Muhammad, Ali Mirza Haider, Tariq Muhammad, Rauf Abdur, Munawar Khurram Shahzad, Alkahtani Hamad M, Alhaj Zen Amer, Ali Shah Syed Adnan
Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan 64200 Pakistan
Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan 64200 Pakistan.
RSC Adv. 2025 May 1;15(18):13786-13798. doi: 10.1039/d5ra00040h. eCollection 2025 Apr 28.
In this research, we synthesized (CoO) and (CoO) nanoparticles (NPs) utilizing aqueous and ethanolic extracts, respectively, of leaves. The biosynthesized NPs were sonicated with reduced graphene oxide (rGO) to produce rGO@(COO) and rGO@(CoO) nanocomposites (NCs) and their respective calcined (700 °C) products rGO@(COO) and rGO@(CoO). The nanomaterials (NMs) were characterized through XRD, FTIR, UV-visible spectroscopy, SEM, TGA, and DSC analyses. They exhibited crystallite sizes of 10-15.4 nm and band gaps of 5.1-5.9 mV. Their surfaces were coated with organic moieties from plant extracts. TGA and DSC analyses showed the endothermic loss of moisture and exothermic evolution of organic contents. SEM images revealed the rough and porous surfaces of NPs, making them efficient catalysts for water splitting. Linear swap voltammetry (LSV) measurements for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), Tafel slopes and double layer capacitance ( ) values reflected a decrease in electrocatalytic water splitting efficiency in the following order: rGO@(CoO) > (CoO) > rGO@(CoO) and rGO@(CoO) > (CoO) > rGO@(CoO). Each aqueous extract-derived nanomaterial was electrocatalytically more active than its respective ethanolic extract-derived counterpart. Moreover, the non-calcined rGO decorated CoO products showed superior electrocatalytic performance compared with their calcined counterparts and therefore, can be recommended as the best choices for electrocatalytic water splitting applications.
在本研究中,我们分别利用树叶的水提取物和乙醇提取物合成了(CoO)和(CoO)纳米颗粒(NPs)。将生物合成的纳米颗粒与还原氧化石墨烯(rGO)进行超声处理,以制备rGO@(COO)和rGO@(CoO)纳米复合材料(NCs)及其各自的煅烧(700°C)产物rGO@(COO)和rGO@(CoO)。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、紫外可见光谱、扫描电子显微镜(SEM)、热重分析(TGA)和差示扫描量热法(DSC)分析对这些纳米材料(NMs)进行了表征。它们的微晶尺寸为10 - 15.4纳米,带隙为5.1 - 5.9毫伏。其表面被植物提取物中的有机部分包覆。TGA和DSC分析显示了水分的吸热损失和有机成分的放热释放。SEM图像揭示了纳米颗粒粗糙且多孔的表面,使其成为水分解的高效催化剂。氧析出反应(OER)和析氢反应(HER)的线性扫描伏安法(LSV)测量、塔菲尔斜率和双层电容( )值反映出电催化水分解效率按以下顺序降低:rGO@(CoO) > (CoO) > rGO@(CoO) 以及 rGO@(CoO) > (CoO) > rGO@(CoO)。每种水提取物衍生的纳米材料在电催化方面比其各自乙醇提取物衍生的对应物更具活性。此外,未煅烧的rGO修饰的CoO产物与其煅烧对应物相比表现出优异的电催化性能,因此,可被推荐为电催化水分解应用的最佳选择。