Suppr超能文献

交叉关怀:评估预训练数据对语言模型偏差的医疗保健影响。

Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias.

作者信息

Chen Shan, Gallifant Jack, Gao Mingye, Moreira Pedro, Munch Nikolaj, Muthukkumar Ajay, Rajan Arvind, Kolluri Jaya, Fiske Amelia, Hastings Janna, Aerts Hugo, Anthony Brian, Celi Leo Anthony, La Cava William G, Bitterman Danielle S

机构信息

Harvard.

Mass General Brigham.

出版信息

Adv Neural Inf Process Syst. 2024;37(D-ampB):23756-23795.

Abstract

Large language models (LLMs) are increasingly essential in processing natural languages, yet their application is frequently compromised by biases and inaccuracies originating in their training data. In this study, we introduce , the first benchmark framework dedicated to assessing biases and real world knowledge in LLMs, specifically focusing on the representation of disease prevalence across diverse demographic groups. We systematically evaluate how demographic biases embedded in pre-training corpora like influence the outputs of LLMs. We expose and quantify discrepancies by juxtaposing these biases against actual disease prevalences in various U.S. demographic groups. Our results highlight substantial misalignment between LLM representation of disease prevalence and real disease prevalence rates across demographic subgroups, indicating a pronounced risk of bias propagation and a lack of real-world grounding for medical applications of LLMs. Furthermore, we observe that various alignment methods minimally resolve inconsistencies in the models' representation of disease prevalence across different languages. For further exploration and analysis, we make all data and a data visualization tool available at: www.crosscare.net.

摘要

大语言模型(LLMs)在处理自然语言方面变得越来越重要,然而它们的应用常常受到源自训练数据的偏差和不准确之处的影响。在本研究中,我们引入了第一个专门用于评估大语言模型中的偏差和现实世界知识的基准框架,特别关注不同人口群体中疾病患病率的呈现。我们系统地评估了诸如预训练语料库中嵌入的人口统计学偏差如何影响大语言模型的输出。通过将这些偏差与美国不同人口群体的实际疾病患病率并列比较,我们揭示并量化了差异。我们的结果凸显了大语言模型对疾病患病率的呈现与不同人口亚组的实际疾病患病率之间存在显著偏差,这表明存在明显的偏差传播风险,且大语言模型在医学应用中缺乏现实世界依据。此外,我们观察到各种对齐方法在最小程度上解决了模型在不同语言中对疾病患病率呈现的不一致性问题。为了进一步探索和分析,我们在以下网址提供所有数据和一个数据可视化工具:www.crosscare.net。

相似文献

本文引用的文献

1
Explicitly unbiased large language models still form biased associations.明确无偏见的大语言模型仍然会形成有偏见的关联。
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2416228122. doi: 10.1073/pnas.2416228122. Epub 2025 Feb 20.
5
The effect of using a large language model to respond to patient messages.使用大语言模型回复患者信息的效果。
Lancet Digit Health. 2024 Jun;6(6):e379-e381. doi: 10.1016/S2589-7500(24)00060-8. Epub 2024 Apr 24.
7
Peer review of GPT-4 technical report and systems card.GPT-4技术报告和系统卡片的同行评审。
PLOS Digit Health. 2024 Jan 18;3(1):e0000417. doi: 10.1371/journal.pdig.0000417. eCollection 2024 Jan.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验