Beltran-Leiva Maria J, Batista Enrique R, Yang Ping
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 United States.
JACS Au. 2025 Apr 14;5(4):1746-1759. doi: 10.1021/jacsau.4c01277. eCollection 2025 Apr 28.
Understanding the principles that govern actinide-ligand (An-L) bonding is essential for advancing practical applications in nuclear industry and environmental protection, as well as for deepening our fundamental knowledge of actinide chemistry. Modifying the symmetry or softness of the coordinating ligand, or altering the metal center, are common strategies to modulate the energy and orbital overlap in An-L interactions, driving both experimental and computational research efforts toward greater control over covalency. On the metal side, reducing the oxidation state causes the f- and d-orbitals to become more diffuse and destabilized. This not only enhances covalency when coordinated to suitable ligands but also opens the door to novel bonding modes via metal-to-ligand back-donation which despite their potential for advancing separation chemistry, remain largely underexplored. On the ligand side, symmetry plays a critical role in controlling the types of bonding modes. In this work, we demonstrate that variations in actinide oxidation state across the early actinide series can be used as a lever to selectively activate or suppress back-bonds. By selecting three ligands-allyl, cyclocumulene, and cyclopropene-each possessing symmetries conducive to δ and φ back-bond formation, we identified a previously elusive φ "head-to-head" back-bond. This interaction emerged as the strongest in uranium and protactinium diallyl complexes, surpassing the φ back-bonds observed in cyclooctatetraene (COT) systems. Additionally, an extension of the Dewar-Chatt-Duncanson model to f-elements is proposed. These findings not only advance our fundamental understanding of actinide bonding but also open new pathways for 5f-electrons-driven chemistries.
理解支配锕系元素 - 配体(An - L)键合的原理对于推进核工业和环境保护中的实际应用以及深化我们对锕系元素化学的基础知识至关重要。改变配位配体的对称性或柔软性,或者改变金属中心,是调节An - L相互作用中能量和轨道重叠的常见策略,推动实验和计算研究工作朝着更好地控制共价性发展。在金属方面,降低氧化态会使f轨道和d轨道变得更加弥散且不稳定。这不仅在与合适的配体配位时增强了共价性,还通过金属到配体的反馈π键打开了新的键合模式之门,尽管它们在推进分离化学方面具有潜力,但在很大程度上仍未得到充分探索。在配体方面,对称性在控制键合模式的类型中起着关键作用。在这项工作中,我们证明了早期锕系元素系列中锕系元素氧化态的变化可以用作选择性激活或抑制反馈键的杠杆。通过选择三种配体——烯丙基、环累积烯烃和环丙烯——每种配体都具有有利于δ和φ反馈键形成的对称性,我们确定了一种以前难以捉摸的φ“头对头”反馈键。这种相互作用在铀和镤的二烯丙基配合物中表现为最强,超过了在环辛四烯(COT)体系中观察到的φ反馈键。此外,还提出了将Dewar - Chatt - Duncanson模型扩展到f元素的方法。这些发现不仅推进了我们对锕系元素键合的基本理解,还为5f电子驱动的化学开辟了新途径。