Chen Qingteng, Liu Jian, Yang Bo
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
JACS Au. 2025 Apr 1;5(4):1791-1802. doi: 10.1021/jacsau.5c00045. eCollection 2025 Apr 28.
Modeling the diffusion behavior of nonuniformly distributed systems at the mesoscopic scale presents significant challenges. In this study, we investigate how the nonuniform mesoscale spatial distribution of aromatic compounds, i.e., the hydrocarbon pool, affects olefin selectivity during the methanol-to-olefins (MTO) process. Ab initio molecular dynamics with enhanced sampling methods and kinetic Monte Carlo techniques were employed to analyze olefin diffusion in a "fully filled from the outside to the inside" distribution model. Our results reveal that while the coexistence of olefins with aromatic compounds hinders olefin diffusion, it simultaneously enhances ethylene selectivity. Further analysis of diffusion rate control and olefin residence time distributions within the zeolite model identifies key elementary diffusion processes and elucidates why aromatic compounds preferentially form at the rim of the SAPO-34 zeolite during the MTO process. This integrated approach enables the simulation of catalytic systems over larger spatial and temporal scales, providing a comprehensive understanding of the underlying mechanisms and facilitating the design of more efficient and ethylene-selective catalysts.
在介观尺度上对非均匀分布系统的扩散行为进行建模面临重大挑战。在本研究中,我们研究了芳香族化合物(即烃池)的非均匀介观尺度空间分布如何影响甲醇制烯烃(MTO)过程中的烯烃选择性。采用具有增强采样方法的从头算分子动力学和动力学蒙特卡罗技术,在“从外到内完全填充”分布模型中分析烯烃扩散。我们的结果表明,虽然烯烃与芳香族化合物共存会阻碍烯烃扩散,但同时会提高乙烯选择性。对沸石模型内的扩散速率控制和烯烃停留时间分布的进一步分析,确定了关键的基本扩散过程,并阐明了在MTO过程中芳香族化合物为何优先在SAPO-34沸石边缘形成。这种综合方法能够在更大的空间和时间尺度上模拟催化系统,全面理解潜在机制,并有助于设计更高效、更具乙烯选择性的催化剂。