Kahlert Lukas, Patel Ketan D, Lichstrahl Michael S, Li Rongfeng, He Chengkun, Gulick Andrew M, Townsend Craig A
Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States.
Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States.
JACS Au. 2025 Apr 16;5(4):1992-2003. doi: 10.1021/jacsau.5c00231. eCollection 2025 Apr 28.
The simple but essential azetidinone core of the β-lactam antibiotics is uniquely N-sulfonated in the monobactam subfamily. This feature confers both target binding specificity to inactivate bacterial cell wall biosynthesis (antibiosis) and structural differentiation to elude destruction by metallo-β-lactamases (MBLs). The recent FDA approval of Emblaveo to treat serious bacterial infections combines an established synthetic monobactam aztreonam and avibactam, which additionally blocks serine β-lactamases, to create a broadly effective antibacterial therapeutic. Here we report experiments to capture the native monobactam biosynthetic steps to the natural product sulfazecin with the aim of accessing new monobactams by reprogramming its biosynthetic machinery. In sulfazecin biosynthesis, the β-lactam ring is formed by a nonribosomal peptide synthetase SulM that incorporates l-2,3-diaminopropionate (Dap), which is then N-sulfonated in trans and efficiently cyclized to the fully elaborated monobactam by an unusual thioesterase (TE) domain. We describe an improved synthesis of (2,3)-vinylDap to support rational structure-based engineering experiments to obtain the corresponding (4)-vinyl sulfazecin. While these experiments were initially based on an AlphaFold model of the adenylation domain that incorporates Dap (SulM A3), we further report high-resolution X-ray crystal structures with both the l-Dap substrate and an accurate analogue of the activated (3)-methyl-Dap adenylate bound. The ligand-bound structures rationalize the inability of SulA3 to incorporate larger substrates. Comparisons with the structures of other diamino acid-activating adenylation domains identify alternate binding modes that may be more suitable for the production of sulfazecin analogues. The impact of these structures on the further engineering of the SulA3 domain and its relation to monobactam synthesis in the recently structurally characterized SulTE are discussed.
β-内酰胺抗生素简单却关键的氮杂环丁酮核心在单环β-内酰胺亚家族中独特地进行了N-磺化。这一特性既赋予了靶标结合特异性以灭活细菌细胞壁生物合成(抗菌作用),又实现了结构分化以避免被金属β-内酰胺酶(MBLs)破坏。美国食品药品监督管理局(FDA)近期批准的用于治疗严重细菌感染的Emblaveo,将已有的合成单环β-内酰胺氨曲南和阿维巴坦结合在一起,阿维巴坦还能阻断丝氨酸β-内酰胺酶,从而创造出一种具有广泛疗效的抗菌疗法。在此,我们报告了旨在捕获天然产物磺泽菌素的天然单环β-内酰胺生物合成步骤的实验,目的是通过对其生物合成机制进行重新编程来获得新的单环β-内酰胺。在磺泽菌素的生物合成中,β-内酰胺环由非核糖体肽合成酶SulM形成,该酶掺入l-2,3-二氨基丙酸(Dap),然后Dap在反式反应中进行N-磺化,并通过一个不寻常的硫酯酶(TE)结构域有效地环化形成完全合成的单环β-内酰胺。我们描述了一种改进的(2,3)-乙烯基Dap合成方法,以支持基于合理结构的工程实验,从而获得相应的(4)-乙烯基磺泽菌素。虽然这些实验最初基于掺入Dap的腺苷化结构域(SulM A3)的AlphaFold模型,但我们进一步报告了l-Dap底物以及结合的活化(3)-甲基-Dap腺苷酸的精确类似物的高分辨率X射线晶体结构。配体结合结构解释了SulA3无法掺入更大底物的原因。与其他二氨基酸活化腺苷化结构域的结构进行比较,确定了可能更适合生产磺泽菌素类似物的替代结合模式。讨论了这些结构对SulA3结构域进一步工程改造的影响及其与最近在结构上得到表征的SulTE中单环β-内酰胺合成的关系。