Stanojkovic Jovana, Terenti Natalia, Stuparu Mihaiela C
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
National Institute for Research and Development of Isotopic and Molecular Technologies - INCDTIM, 67-103 Donat Street, Cluj-Napoca 400293, Romania.
JACS Au. 2025 Mar 24;5(4):1707-1716. doi: 10.1021/jacsau.4c01218. eCollection 2025 Apr 28.
For more than a century, electrophilic aromatic substitution reactions have been central to the construction of a rich variety of organic molecules that are useful in all aspects of human life. Typically, small aromatic nuclei, such as benzene, provide an ideal substrate. An increase in the number of annulated aromatic rings enhances the number of potential reactive sites and frequently results in complex product mixtures. Thus, nanographenes with a relatively large aromatic system are seldom selective in their substitution positions. Moreover, nanographene substrates with a scope for multiple substitution reactions and patterns remain rare. Herein, we demonstrate that a curved aromatic system based on a corannulene-coronene hybrid structure comprising 48 conjugated -carbon atoms allows for direct and regioselective edge functionalization through bromination, nitration, formylation, and Friedel-Crafts acylation in good yields. The postsynthetically installed functional groups can be modified through versatile organic chemistry transformations, including (mechanochemical) Suzuki-Miyaura, Sonogashira-Hagihara, and Buchwald-Hartwig amination reactions. Furthermore, the substitutions can be carried out in a sequential manner to yield heterofunctional structures. The edge-functionalization strategy enables modular access to nanostructures with appealing properties, such as strong fluorescence emission in the visible and near-infrared regions (475-900 nm) with record Stokes shifts (>300 nm), at an exceptionally small carbon footprint (C).
一个多世纪以来,亲电芳香取代反应一直是构建各种丰富有机分子的核心,这些有机分子在人类生活的各个方面都很有用。通常,像苯这样的小芳香核提供了理想的底物。稠合芳香环数量的增加会增加潜在反应位点的数量,并常常导致复杂的产物混合物。因此,具有相对较大芳香体系的纳米石墨烯在其取代位置上很少具有选择性。此外,具有多种取代反应和模式的纳米石墨烯底物仍然很少见。在此,我们证明了一种基于包含48个共轭碳原子的碗烯 - 蒄杂化结构的弯曲芳香体系,能够通过溴化、硝化、甲酰化和傅克酰化反应以良好的产率实现直接和区域选择性的边缘官能化。合成后安装的官能团可以通过多种有机化学转化进行修饰,包括(机械化学)铃木 - 宫浦、园田 - 萩原和布赫瓦尔德 - 哈特维希胺化反应。此外,取代反应可以依次进行以产生异功能结构。这种边缘官能化策略能够以模块化方式获得具有吸引人特性的纳米结构,例如在可见光和近红外区域(475 - 900 nm)具有强荧光发射且斯托克斯位移创纪录(>300 nm),同时具有极小的碳足迹(C)。