Lv Yunbo, Zhang Baoli, Xie Yuanyuan, Wang Zhen-Gang
State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Macromol Rapid Commun. 2025 Aug;46(16):e2500267. doi: 10.1002/marc.202500267. Epub 2025 May 2.
In this study, we present a Baeyer-Villiger monooxygenase (BVMO)-mimetic catalyst, created through the self-assembly of a degradable arginine-tethered poly (thioctic acid) (pGTA) scaffold with flavin mononucleotide (FMN), driven by electrostatic and hydrophobic interactions. The cationic pGTA scaffold not only facilitated efficient nicotinamide adenine dinucleotide (NADH) access to the FMN center, but also incorporated arginine aiming to stabilize the peroxo intermediate, mimicking the microenvironment of the active site of BVMOs. The self-assembly is confirmed through H-NMR, fluorescence quenching, transmission electron microscopy, the zeta potential, and molecular dynamics simulations. The FMN-based supramolecular catalysts effectively catalyzed NADH oxidation, followed by BV oxidation of cycloketones (including bicyclo[3.2.0]hept-2-en-6-one, 2-phenylcyclobutanone and 3-phenylcyclobutanone) to yield the corresponding lactone with high selectivity. The system demonstrated excellent activity under mild, oxygen-driven conditions, and its performance is further enhanced upon heating. This work provides a promising strategy for designing environmentally friendly biomimetic catalysts with minimal reliance on toxic reagents, advancing green chemistry and sustainable industrial processes.
在本研究中,我们展示了一种模仿拜耳-维利格单加氧酶(BVMO)的催化剂,它是通过可降解的精氨酸连接的聚硫辛酸(pGTA)支架与黄素单核苷酸(FMN)的自组装形成的,由静电和疏水相互作用驱动。阳离子pGTA支架不仅促进了烟酰胺腺嘌呤二核苷酸(NADH)高效进入FMN中心,还引入了精氨酸以稳定过氧中间体,模拟BVMO活性位点的微环境。通过核磁共振氢谱(H-NMR)、荧光猝灭、透射电子显微镜、zeta电位和分子动力学模拟证实了自组装过程。基于FMN的超分子催化剂有效地催化了NADH的氧化,随后将环酮(包括双环[3.2.0]庚-2-烯-6-酮、2-苯基环丁酮和3-苯基环丁酮)进行BV氧化,以高选择性生成相应的内酯。该体系在温和的氧气驱动条件下表现出优异的活性,加热后其性能进一步增强。这项工作为设计对有毒试剂依赖最小的环境友好型仿生催化剂提供了一种有前景的策略,推动了绿色化学和可持续工业过程的发展。