Raps Felix C, Rivas-Souchet Ariadna, Jones Chey M, Hyster Todd K
Department of Chemistry, Princeton University, Princeton, NJ, USA.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
Nature. 2025 Jan;637(8045):362-368. doi: 10.1038/s41586-024-08138-w. Epub 2024 Oct 8.
C-N bond formation is integral to modern chemical synthesis owing to the ubiquity of nitrogen heterocycles in small-molecule pharmaceuticals and agrochemicals. Alkene hydroamination with unactivated alkenes is an atom-economical strategy for constructing these bonds. However, these reactions are challenging to render asymmetric when preparing fully substituted carbon stereocentres. Here we report a photoenzymatic alkene hydroamination to prepare 2,2-disubstituted pyrrolidines by a Baeyer-Villiger mono-oxygenase. Five rounds of protein engineering afforded a mutant, providing excellent product yield and stereoselectivity. Unlike related photochemical hydroaminations, which rely on the oxidation of the amine or alkene for C-N bond formation, this work exploits a through-space interaction of a reductively generated benzylic radical and the nitrogen lone pair. This antibonding interaction lowers the oxidation potential of the radical, enabling electron transfer to the flavin cofactor. Experiments indicate that the enzyme microenvironment is essential in enabling a innovative C-N bond formation mechanism with no parallel in small-molecule catalysis. Molecular dynamics simulations were performed to investigate the substrate in the enzyme active site, which further support this hypothesis. This work is a rare example of an emerging mechanism in non-natural biocatalysis in which an enzyme has access to a mechanism that its individual components do not. Our study showcases the potential of enhancing emergent mechanisms using protein engineering to provide unique mechanistic solutions to unanswered challenges in chemical synthesis.
由于氮杂环在小分子药物和农用化学品中无处不在,碳氮键的形成是现代化学合成不可或缺的一部分。未活化烯烃的烯烃氢胺化反应是构建这些键的一种原子经济策略。然而,在制备完全取代的碳立体中心时,这些反应的不对称性很难实现。在此,我们报道了一种光酶催化的烯烃氢胺化反应,通过拜耳-维利格单加氧酶制备2,2-二取代吡咯烷。经过五轮蛋白质工程改造得到了一个突变体,其产物收率和立体选择性都非常出色。与依赖胺或烯烃氧化来形成碳氮键的相关光化学氢胺化反应不同,这项工作利用了还原生成的苄基自由基与氮孤对之间的空间相互作用。这种反键相互作用降低了自由基的氧化电位,使得电子能够转移到黄素辅因子上。实验表明,酶的微环境对于实现一种在小分子催化中不存在的创新碳氮键形成机制至关重要。我们进行了分子动力学模拟来研究酶活性位点中的底物,这进一步支持了这一假设。这项工作是非天然生物催化中一种新兴机制的罕见例子,即酶能够利用一种其单个组分所没有的机制。我们的研究展示了利用蛋白质工程增强新兴机制的潜力,为化学合成中未解决的挑战提供独特的机制解决方案。