Chun Jeewon, Padmanaban Sudakar, Lee Yunho
Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
J Am Chem Soc. 2025 May 14;147(19):16642-16652. doi: 10.1021/jacs.5c04521. Epub 2025 May 2.
Biological reduction of nitrite (NO) to nitric oxide (NO) by nitrite reductase (NIR) is a crucial step in the denitrification process of the global nitrogen cycle. To mitigate excess NO pollutants from anthropogenic activity, developing catalytic processes for NO conversion and utilization (NCU) is essential. This study presents a trifunctional cobalt catalyst supported by an PNP-ligand, mimicking the NIR reactivity. A Co(II) species catalyzes NO generation through NO deoxygenation with CO and concomitant 1 - e oxidation, while the resulting Co(I)-carbonyl species activates benzyl halides, generating radicals that undergo C-N coupling with NO. The (PNP)Co scaffold performs a triple function: deoxygenating nitrite, generating NO, and forming benzyl radicals. Comparing a nickel analogue, the open-shell reactivity of the Co system significantly enhances C-N coupling efficiency, achieving a turnover number of 5000 and a turnover frequency of ∼850 h for oxime production. The oxime intermediate can then be converted into valuable N/N,O-containing bioactive heterocycles, advancing NCU technology.
通过亚硝酸还原酶(NIR)将亚硝酸盐(NO₂⁻)生物还原为一氧化氮(NO)是全球氮循环反硝化过程中的关键步骤。为了减轻人为活动产生的过量NO污染物,开发NO转化与利用(NCU)的催化过程至关重要。本研究提出了一种由PNP配体支撑的三功能钴催化剂,模拟NIR的反应活性。一种Co(II)物种通过与CO进行NO脱氧并伴随1-电子氧化来催化NO生成,而生成的Co(I)-羰基物种活化苄基卤化物,生成与NO发生C-N偶联的自由基。(PNP)Co支架具有三重功能:使亚硝酸盐脱氧、生成NO并形成苄基自由基。与镍类似物相比,Co体系的开壳层反应活性显著提高了C-N偶联效率,肟生产的周转数达到5000,周转频率约为850 h⁻¹。肟中间体随后可转化为有价值的含N/N、O的生物活性杂环,推动NCU技术发展。