Sun Yun, Zhang Fan, Li Jing, Zhang Ying, Peng Jingyi, Wang Zili, Xie Weiran, Gao Fan, Zhao Runyu, Yao Yuan, Zou Jin, Zhang Jie, Hong Bin, Xu Yong, Eimer Sylvain, Wen Lianggong, Zhang Hui, Jin Zuanming, Wu Xiaojun, Nie Tianxiao, Zhao Weisheng
Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China.
National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
ACS Nano. 2025 May 13;19(18):17450-17461. doi: 10.1021/acsnano.4c18252. Epub 2025 May 2.
The rapid advancement of future information technologies necessitates the development of high-efficiency and cost-effective solutions for terahertz emitters, which hold significant practical value in next-generation communication, terahertz sensing, and quantum computing applications. Distinguished from trivial materials, three-dimensional topological insulators exhibit spin-momentum locking in helical Dirac surface states, making them highly efficient spin-to-charge converters that have the potential to revolutionize electronics. However, the efficiency of utilizing topological insulators for spin terahertz emission has not yet matched that of spin manipulation in other spintronic devices. Here, we investigate the spin terahertz emission properties of high crystalline quality (BiSb)Te/Fe heterostructures through band structure engineering. Notably, contrary to expectations, the strongest terahertz radiation is not achieved at the charge neutrality point. Through an analysis of influencing factors and a temperature-independent investigation, we identify interface transparency as the primary factor affecting emission efficiency. To optimize interfaces and enhance spin-to-charge conversion efficiency, a Rashba-mediated Dirac surface state is constructed by attaching a Bi layer. Furthermore, with doping concentrations of 0, 0.5, and 1, respectively, we observe enhancements in intensity by 35.1, 50.3, and 44.3%. These results provide a detailed assessment of interfacial and doping effects in topological-insulator-based terahertz emitters and contribute to the understanding of spin-to-charge dynamics in topological materials.
未来信息技术的快速发展,使得开发高效且经济高效的太赫兹发射器解决方案成为必要,这在下一代通信、太赫兹传感和量子计算应用中具有重大的实用价值。与普通材料不同,三维拓扑绝缘体在螺旋狄拉克表面态中表现出自旋动量锁定,使其成为高效的自旋到电荷转换器,有可能给电子学带来变革。然而,利用拓扑绝缘体进行自旋太赫兹发射的效率尚未达到其他自旋电子器件中的自旋操控效率。在此,我们通过能带结构工程研究了高质量晶体(BiSb)Te/Fe异质结构的自旋太赫兹发射特性。值得注意的是,与预期相反,在电荷中性点并未实现最强的太赫兹辐射。通过对影响因素的分析和与温度无关的研究,我们确定界面透明度是影响发射效率的主要因素。为了优化界面并提高自旋到电荷的转换效率,通过附着一层Bi构建了Rashba介导的狄拉克表面态。此外,分别在掺杂浓度为0、0.5和1时,我们观察到强度增强了35.1%、50.3%和44.3%。这些结果详细评估了基于拓扑绝缘体的太赫兹发射器中的界面和掺杂效应,并有助于理解拓扑材料中的自旋到电荷动力学。