文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Microneedle-aided nanotherapeutics delivery and nanosensor intervention in advanced tissue regeneration.

作者信息

Xu Churong, Wu Fei, Duan Zhouyi, Rajbanshi Bhavana, Qi Yuxin, Qin Jiaming, Dai Liming, Liu Chaozong, Jin Tuo, Zhang Bingjun, Zhang Xiaoling

机构信息

Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

J Nanobiotechnology. 2025 May 3;23(1):330. doi: 10.1186/s12951-025-03383-1.


DOI:10.1186/s12951-025-03383-1
PMID:40319333
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12048949/
Abstract

Microneedles (MNs) have been extensively used as transdermal therapeutics delivery devices since 1998 due to their capacity to penetrate physiological barriers with minimal invasiveness. Recent advances demonstrate the potential of MNs in improving diverse tissue regeneration when integrated with nanometer-sized therapeutics or sensors. This synergistic strategy can enhance drug delivery efficiency and therapeutic outcomes, and enable precise and personalized therapies through real-time monitoring of the repair process. In this review, we discuss how optimized MNs (through adjustments in geometry, material properties, and modular structure), when combined with dimension- and composition-specific nanomaterials, enhance tissue regeneration efficiency. Moreover, integrating stimuli-responsive nanotherapeutics or nanosensors into MNs for spatiotemporal-controlled and targeted drug release, physiotherapy effects, and intelligent monitoring is systematically outlined. Furthermore, we summarize therapeutic applications of nanotherapeutics-MN platforms in various soft and hard tissues, including skin, hair follicles (HF), cornea, joint, tendons, sciatic nerves, spinal cord, periodontium, oral mucosa, myocardium, endometrium, bone and intervertebral discs (IVD). Notably, recent attempts using nanosensor-MN platforms as smart wearable devices for monitoring damaged tissues via interstitial fluid (ISF) extraction and biomarker sensing are analyzed. This review potentially provides tissue regeneration practitioners/researchers with a cross-disciplinary perspective and inspiration.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/ea33eafdfed4/12951_2025_3383_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/64304dd5dd0b/12951_2025_3383_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/2ef39461c6d2/12951_2025_3383_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/7efa3f9158c0/12951_2025_3383_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/016b413e2943/12951_2025_3383_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/57b72ce6559a/12951_2025_3383_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/0aa3be55de61/12951_2025_3383_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/bd38c8bf861b/12951_2025_3383_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/21bebd57ada9/12951_2025_3383_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/2f7e59e079eb/12951_2025_3383_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/e0218323c32b/12951_2025_3383_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/ea33eafdfed4/12951_2025_3383_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/64304dd5dd0b/12951_2025_3383_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/2ef39461c6d2/12951_2025_3383_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/7efa3f9158c0/12951_2025_3383_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/016b413e2943/12951_2025_3383_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/57b72ce6559a/12951_2025_3383_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/0aa3be55de61/12951_2025_3383_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/bd38c8bf861b/12951_2025_3383_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/21bebd57ada9/12951_2025_3383_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/2f7e59e079eb/12951_2025_3383_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/e0218323c32b/12951_2025_3383_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9044/12048949/ea33eafdfed4/12951_2025_3383_Fig11_HTML.jpg

相似文献

[1]
Microneedle-aided nanotherapeutics delivery and nanosensor intervention in advanced tissue regeneration.

J Nanobiotechnology. 2025-5-3

[2]
Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery.

Acta Biomater. 2018-9-8

[3]
Advances in microneedles for transdermal diagnostics and sensing applications.

Mikrochim Acta. 2024-6-19

[4]
Advances and challenges in developing smart, multifunctional microneedles for biomedical applications.

Biotechnol Bioeng. 2022-10

[5]
Recent progress in the 3D printing of microneedle patches for biomedical applications.

Int J Pharm. 2025-1-5

[6]
Microneedle-Integrated Sensors for Extraction of Skin Interstitial Fluid and Metabolic Analysis.

Int J Mol Sci. 2023-6-8

[7]
Microneedle, bio-microneedle and bio-inspired microneedle: A review.

J Control Release. 2017-2-16

[8]
Semi-invasive wearable clinic: Solution-processed smart microneedle electronics for next-generation integrated diagnosis and treatment.

Biosens Bioelectron. 2024-9-15

[9]
Microneedle-enabled therapeutics delivery and biosensing in clinical trials.

J Control Release. 2023-8

[10]
A new paradigm for numerical simulation of microneedle-based drug delivery aided by histology of microneedle-pierced skin.

J Pharm Sci. 2015-6

本文引用的文献

[1]
Interface Dominated Spin-to-Charge Conversion in Terahertz Emission by Band Structure Engineering of Topological Surface States.

ACS Nano. 2025-5-13

[2]
Emerging trans-Eurasian heatwave-drought train in a warming climate.

Sci Adv. 2025-5-2

[3]
Targeted Anti-Inflammatory Nanozymes with Pro-Angiogenic Activity for Myocardial Infarction Therapy.

Adv Healthc Mater. 2025-5

[4]
Cellular-level insight into biointerface: From surface charge modulation to boosted photocatalytic oxidative disinfection.

Chem Eng J. 2023-2

[5]
Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging.

Adv Mater Technol. 2025-2-5

[6]
Microneedle-Integrated Device for Transdermal Sampling and Analyses of Targeted Biomarkers.

Small Sci. 2023-4-22

[7]
Minimally invasive snakebite inspired microneedle delivery system for internal organs.

Bioact Mater. 2025-3-24

[8]
Spin-configuration of emission states in zero-dimensional metal halides.

Natl Sci Rev. 2024-5-25

[9]
An annular corneal microneedle patch for minimally invasive ophthalmic drug delivery.

Sci Adv. 2025-3-7

[10]
Ultrasensitive Detection of FEN1 Activity for Cancer Diagnosis Using a CRISPR/Cas13a-Based Triple Cascade Amplification System.

Adv Healthc Mater. 2025-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索