Wu Lan-Qing, Li Zhe, Li Huamei, Zhang Jin-Yu, Li Yong, Ren Shuang-Xin, Fan Zhen-Yu, Wang Xiao-Tian, Li Kun, Liu Zhen, Zhang Jie, Yang Ji-Chi, Li Ya-Wen, Bo Shou-Hang, Zhao Qing
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 30071, China.
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
J Am Chem Soc. 2025 May 14;147(19):16506-16521. doi: 10.1021/jacs.5c03606. Epub 2025 May 2.
Sulfone-based electrolytes offer unusually high anodic and thermal stability that in principle makes them promising candidates for fabricating energy-dense lithium metal batteries (LMBs). Their uses in practical batteries are currently limited by their inability to sustain long-term Li metal plating/stripping processes due to their high reactivity toward the Li metal. Here, we report on the design and synthesis of a unique family of fluorosulfonyl group-based (FSO) molecules, modified with ethyl (FSE)/,-dimethyl (FSNDM)/,-diethyl (FSNDE)/-pyrrolidine (FSNP) end groups to create exceptionally stable single-salt single-solvent electrolytes. The flammability, solvation structure, ion transport, Li metal deposition kinetics, and high-voltage stability of the electrolytes are systematically studied. It is shown that the electrolytes are nonflammable, possess weak solvation characteristics, yet manifest high room-temperature ionic conductivities (1.6-6.1 mS cm) and low solution viscosities. In comparison to FSE, the FSNDM-, FSNDE-, and FSNP-based electrolytes exhibit an exceptionally reversible Coulombic efficiency for Li metal plating/stripping (>99.71% over 800 cycles) and exhibit typical oxidative stability at voltages exceeding 4.6 V. Deployed as electrolytes in Li metal batteries (20 μm Li anode and 3 g A h electrolyte) with high-loading (18.5 mg cm) LiNiCoMnO cathodes, 329 cycles have been achieved before 80% capacity retention. Six Ah Li metal pouch cells based on the designed electrolytes also exhibit high stability and high energy density (496 W h kg) for over 150 cycles with at most 2.7% volume expansion. Our findings demonstrate that through an intentional molecular design, sulfone electrolytes provide a robust route toward nonflammable Li metal compatible electrolytes with practical high-voltage cathodes.
基于砜的电解质具有异常高的阳极稳定性和热稳定性,从原理上讲,这使它们成为制造能量密集型锂金属电池(LMB)的有前途的候选材料。由于它们对锂金属具有高反应性,目前它们在实际电池中的应用受到无法维持长期锂金属电镀/剥离过程的限制。在此,我们报告了一类独特的基于氟磺酰基(FSO)分子的设计与合成,这些分子用乙基(FSE)/二甲基(FSNDM)/二乙基(FSNDE)/吡咯烷(FSNP)端基进行了修饰,以制备出异常稳定的单盐单溶剂电解质。系统研究了电解质的可燃性、溶剂化结构、离子传输、锂金属沉积动力学和高压稳定性。结果表明,这些电解质不可燃,具有较弱的溶剂化特性,但表现出高的室温离子电导率(1.6 - 6.1 mS/cm)和低的溶液粘度。与FSE相比,基于FSNDM、FSNDE和FSNP的电解质在锂金属电镀/剥离方面表现出异常可逆的库仑效率(在800次循环中>99.71%),并且在超过4.6 V的电压下表现出典型的氧化稳定性。在具有高负载(18.5 mg/cm²)LiNiCoMnO正极的锂金属电池(20 μm锂阳极和3 g/Ah电解质)中用作电解质时,在容量保持率达到80%之前实现了329次循环。基于所设计电解质的6 Ah锂金属软包电池在超过150次循环中也表现出高稳定性和高能量密度(496 W h/kg),体积膨胀最多为2.7%。我们的研究结果表明,通过有意的分子设计,砜电解质为制备与实用高压阴极兼容的不可燃锂金属电解质提供了一条可靠的途径。