Tabatabaei Maryam, Cho Dong-Wan, Fahad Saisaban, Jeong Dae-Woon, Hwang Jae-Hoon
Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea.
Sci Total Environ. 2025 Jun 10;980:179567. doi: 10.1016/j.scitotenv.2025.179567. Epub 2025 May 1.
Per- and polyfluoroalkyl substances (PFAS), such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are persistent environmental pollutants posing significant risks to ecosystems, drinking water safety, and human health. Conventional PFAS removal methods effectively mitigate contamination but face challenges such as high operational costs, energy demands, and secondary waste production. Photocatalytic methods have emerged as a promising alternative, utilizing light-activated semiconductors to generate reactive oxygen species (ROS), which facilitate the efficient degradation of PFAS into non-toxic byproducts. Advanced photocatalysts, such as titanium dioxide (TiO), demonstrate significant potential under UV and visible light, though challenges remain, including low activity under visible light, rapid recombination of photogenerated electron-hole pairs, and inefficient carrier utilization. To address these limitations, strategies such as non-metal and metal doping and combining wide- and narrow-bandgap semiconductors have been explored to enhance light absorption, photocatalytic efficiency, and stability. Recent developments in photocatalysts, including PMR technology (80 % PFOA removal in 2 h) (Junker et al., 2024b), BiO-modified GaO (59.6 % defluorination) (Chen et al., 2024), and lead-doped TiO/rGO (98 % PFOA removal in 24 h) (Chowdhury and Choi, 2023), have improved PFAS degradation by optimizing light absorption, charge separation, and surface adsorption. Hybrid systems integrating photocatalysis with other treatment methods, such as adsorption and electrochemical oxidation, offer a path toward sustainable, efficient PFAS remediation. This review explores the latest advancements in photocatalytic technologies and highlights future directions, including the development of cost-effective, environmentally friendly materials and field-scale validation. These efforts emphasize the potential of photocatalysis as a cornerstone in achieving sustainable water treatment solutions and protecting environmental and public health.
全氟和多氟烷基物质(PFAS),如全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS),是持久性环境污染物,对生态系统、饮用水安全和人类健康构成重大风险。传统的PFAS去除方法能有效减轻污染,但面临高运营成本、能源需求和二次废物产生等挑战。光催化方法已成为一种有前景的替代方法,利用光激活半导体产生活性氧物种(ROS),促进PFAS高效降解为无毒副产物。先进的光催化剂,如二氧化钛(TiO),在紫外光和可见光下显示出巨大潜力,不过挑战依然存在,包括可见光下活性低、光生电子 - 空穴对快速复合以及载流子利用效率低。为解决这些限制,已探索了非金属和金属掺杂以及宽带隙和窄带隙半导体组合等策略,以增强光吸收、光催化效率和稳定性。光催化剂的最新进展,包括PMR技术(2小时内去除80%的PFOA)(容克等人,202X年b)、BiO修饰的GaO(脱氟率59.6%)(陈等人,2024年)以及铅掺杂的TiO/rGO(24小时内去除98%的PFOA)(乔杜里和崔,2023年),通过优化光吸收、电荷分离和表面吸附提高了PFAS的降解效果。将光催化与其他处理方法(如吸附和电化学氧化)相结合的混合系统,为可持续、高效的PFAS修复提供了一条途径。本综述探讨了光催化技术的最新进展,并突出了未来方向,包括开发具有成本效益、环境友好的材料以及现场规模验证。这些努力强调了光催化作为实现可持续水处理解决方案以及保护环境和公众健康基石方法的潜力。