Suppr超能文献

5G新无线电技术下扩展神经网络定位算法的性能评估

Performance evaluation on extended neural network localization algorithm on 5 g new radio technology.

作者信息

R Deebalakshmi, Markkandan S, Arjunan Vinodh Kumar

机构信息

School of Computing, SRM Institute of Science and Technology, Tiruchirappalli, Tamil Nadu, India.

School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai, Tamil Nadu, India.

出版信息

Sci Rep. 2025 May 2;15(1):15354. doi: 10.1038/s41598-025-96673-5.

Abstract

With the rapid growth of fifth-generation (5G) networks, there is an increasing demand for high-precision localisation, achieving which is a major challenge in real-time applications in dynamic and noisy environments. Signal noise and incomplete data, including time difference of arrival (TDoA), angle of arrival (AoA), and frequency of arrival (FoA), often limit traditional methods from achieving improved localization. This research proposes an advanced hybrid localisation method combining Extended Kalman Filter (EKF) and Extended Neural Network (ENN) with HackRF-based software-defined radios (SDRs) to improve the real-time localization in 5G environments. The method achieves a better localization accuracy by using EKF for noise reduction and ENN for localization data fusion and combining FoA, AoA, and TDoA measurements. Experiments using real-time 5G signal data show that the proposed EKF-ENN fusion outperforms the existing methods. It obtains an AoA mean of 0.08 radians (SD = 0.014 rad), a TDoA mean of 0.020 s (SD = 0.003 s), and a FoA mean of 0.49 Hz (SD = 0.09 Hz). Its Mean Squared Error (MSE) of 1.06e and Signal-to-Noise Ratio (SNR) of 11.7 dB show that it attains better performance than existing ones. Its increased localisation accuracy and signal processing efficiency qualifies it for real-time usage in next-generation wireless networks.

摘要

随着第五代(5G)网络的迅速发展,对高精度定位的需求日益增长,而在动态和嘈杂环境中的实时应用中实现高精度定位是一项重大挑战。信号噪声和不完整数据,包括到达时间差(TDoA)、到达角度(AoA)和到达频率(FoA),常常限制传统方法实现更高的定位精度。本研究提出一种先进的混合定位方法,将扩展卡尔曼滤波器(EKF)和扩展神经网络(ENN)与基于HackRF的软件定义无线电(SDR)相结合,以提高5G环境中的实时定位性能。该方法通过使用EKF进行降噪,ENN进行定位数据融合,并结合FoA、AoA和TDoA测量值,实现了更高的定位精度。使用实时5G信号数据进行的实验表明,所提出的EKF-ENN融合方法优于现有方法。它获得的AoA平均值为0.08弧度(标准差=0.014弧度),TDoA平均值为0.020秒(标准差=0.003秒),FoA平均值为0.49赫兹(标准差=0.09赫兹)。其均方误差(MSE)为1.06e,信噪比(SNR)为11.7分贝,表明它比现有方法具有更好的性能。其提高的定位精度和信号处理效率使其有资格在下一代无线网络中实时使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/259f/12048563/a95cb53f41b9/41598_2025_96673_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验