Suppr超能文献

基于迭代回归的无线传感器网络混合定位

Iterative Regression Based Hybrid Localization for Wireless Sensor Networks.

作者信息

Lee Kyunghyun, Kim Sangkyeum, You Kwanho

机构信息

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea.

出版信息

Sensors (Basel). 2021 Jan 2;21(1):257. doi: 10.3390/s21010257.

Abstract

Among various localization methods, a localization method that uses a radio frequency signal-based wireless sensor network has been widely applied due to its robustness against noise factors and few limits on installation location. In this paper, we focus on an iterative localization scheme for a mobile with a limited number of time difference of arrival (TDOA) and angle of arrival (AOA) data measured from base stations. To acquire the optimal location of a mobile, we propose a recursive solution for localization using an iteratively reweighted-recursive least squares (IR-RLS) algorithm. The proposed IR-RLS scheme can obtain the optimal solution with a fast computational speed when additional TDOA and/or AOA data is measured from base stations. Moreover, while the number of measured TDOA/AOA data was limited, the proposed IR-RLS scheme could obtain the precise location of a mobile. The performance of the proposed IR-RLS method is confirmed through some simulation results.

摘要

在各种定位方法中,一种基于射频信号的无线传感器网络定位方法因其对噪声因素的鲁棒性和对安装位置的限制较少而得到广泛应用。在本文中,我们专注于一种针对移动设备的迭代定位方案,该移动设备从基站测量的到达时间差(TDOA)和到达角度(AOA)数据数量有限。为了获取移动设备的最优位置,我们提出了一种使用迭代重加权递归最小二乘(IR-RLS)算法的递归定位解决方案。当从基站测量到额外的TDOA和/或AOA数据时,所提出的IR-RLS方案能够以快速的计算速度获得最优解。此外,当测量的TDOA/AOA数据数量有限时,所提出的IR-RLS方案能够获得移动设备的精确位置。通过一些仿真结果证实了所提出的IR-RLS方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ef/7794964/6fa7f95db260/sensors-21-00257-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验