Li Yan, Deng Shiyu, Li Yang, Tang Huan, Chen Ziyu, Xie Jinyue, Song Feng, Huang Wei
School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China.
Huzhou College, Huzhou, 313000, P. R. China.
Small. 2025 May 2:e2502819. doi: 10.1002/smll.202502819.
With the increasing demand for anti-counterfeiting measures, the efficient integration of multi-level optical anti-counterfeiting information has become a critical challenge. In this study, a novel bottom-up self-assembly technique is introduced for fabricating composite integrated films. This method overcomes the size limitations of phosphors that achieve circularly polarized light (CPL) through co-assembly with cellulose nanocrystals. Specifically, rare earth metal-organic frameworks with a length of 140 µm can generate CPL with an asymmetry factor of 0.65. Moreover, the introduction of random defects in the film imparts unpredictable CPL properties, enabling dynamic auroral anti-counterfeiting within the decryption optical path. Additionally, an innovative two-stage serial decryption process is proposed by leveraging the non-correlation between orthogonal decryption patterns. Notably, the label surface features biomimetic fingerprint textures that exhibit 3D physical unclonable functions (PUFs) at the mesoscopic scale. These textures possess high entropy close to the ideal value of 1, and an encoding capacity in a 175 × 175 µm area reaches 2. In summary, the composite label achieves a high degree of integration by combining three levels optical anti-counterfeiting information: full-chromatographic tunable photoluminescence, spatially selective random dynamic aurora responses, and 3D bionic mesoscopic PUFs fingerprints.
随着对防伪措施需求的不断增加,多级光学防伪信息的有效整合已成为一项关键挑战。在本研究中,引入了一种新颖的自下而上的自组装技术来制备复合集成薄膜。该方法克服了通过与纤维素纳米晶体共组装实现圆偏振光(CPL)的磷光体的尺寸限制。具体而言,长度为140 µm的稀土金属有机框架可以产生不对称因子为0.65的CPL。此外,在薄膜中引入随机缺陷赋予了不可预测的CPL特性,从而在解密光路中实现动态极光防伪。此外,通过利用正交解密图案之间的非相关性,提出了一种创新的两阶段串行解密过程。值得注意的是,标签表面具有仿生指纹纹理,在介观尺度上表现出3D物理不可克隆功能(PUF)。这些纹理具有接近理想值1的高熵,并且在175×175 µm区域的编码容量达到2。总之,复合标签通过结合全色谱可调光致发光、空间选择性随机动态极光响应和3D仿生介观PUF指纹这三种光学防伪信息实现了高度集成。