Sun Mengdi, Lei Xincheng, Wang Jiayi, Yan Zhangyong, Wei Chenglin, Yuan Zefeng, Gu Xueyang, Wu Lin, Hu Ya, Yang Lin, Wang Xin, Su Dong, Chen Zhongwei
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China.
Small. 2025 Jun;21(24):e2501965. doi: 10.1002/smll.202501965. Epub 2025 May 2.
Lithium─sulfur (Li─S) batteries have garnered extensive research interest due to their high theoretical capacity and cost-effectiveness. However, their practical application is hindered by severe shuttle effects and sluggish conversion kinetics. Here, the development of a novel microreactor composed of undercoordinated edge-rich single-crystal nickel─cobalt bimetallic oxides embedded within a conductive carbon nanotube network (NCO/CNT), as an electrocatalyst for Li─S batteries is reported. The single-crystal bimetallic oxide matrix ensures high structural stability during reactions, while its abundant edge sites provide abundant active catalytic centers. Structural analyses reveal pronounced oxygen undercoordination within NCO/CNT, with these unsaturated sites demonstrating strong adsorption and catalytic activity, effectively promoting sulfur species immobilization and conversion. Complementary theoretical calculations indicate that the unique edge-rich undercoordinated design optimizes the electronic configuration of metal atoms, enhancing electron exchange with sulfur species. Benefiting from these features, Li─S batteries incorporating NCO/CNT achieve an initial discharge capacity of 1327.1 mAh g at 0.2C, and a high areal capacity of 5.4 mAh cm under a sulfur loading of 5.83 mg cm, with 96.3% capacity retention after 50 cycles. This work offers insights into the design of high-performance sulfur microreactors, paving the way for efficient and sustainable sulfur electrochemistry.
锂硫(Li-S)电池因其高理论容量和成本效益而受到广泛的研究关注。然而,其实际应用受到严重的穿梭效应和缓慢的转化动力学的阻碍。在此,报道了一种新型微反应器的开发,该微反应器由嵌入导电碳纳米管网络(NCO/CNT)中的低配位富边缘单晶镍钴双金属氧化物组成,作为锂硫电池的电催化剂。单晶双金属氧化物基体确保了反应过程中的高结构稳定性,而其丰富的边缘位点提供了丰富的活性催化中心。结构分析表明,NCO/CNT中存在明显的氧低配位,这些不饱和位点表现出很强的吸附和催化活性,有效地促进了硫物种的固定和转化。补充的理论计算表明,独特的富边缘低配位设计优化了金属原子的电子构型,增强了与硫物种的电子交换。受益于这些特性,采用NCO/CNT的锂硫电池在0.2C时的初始放电容量为1327.1 mAh g,在硫负载量为5.83 mg cm时的高面积容量为5.4 mAh cm,50次循环后容量保持率为96.3%。这项工作为高性能硫微反应器的设计提供了见解,为高效和可持续的硫电化学铺平了道路。