Yu Guobin, Liu Xiaoya, Huang Weiyuan, Wang Shixin, Zhan Jiqiang, Ma Lu, Li Hongpeng, Lin Xiaojing, Liu Tongchao, Amine Khalil, Li Hongsen
College of Physics, Qingdao University, Qingdao, 266071, China.
Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
Adv Mater. 2025 Jun;37(24):e2418784. doi: 10.1002/adma.202418784. Epub 2025 Apr 11.
Rechargeable aluminum-sulfur batteries (Al-S) are emerging as a promising alternative energy storage system beyond lithium-ion batteries due to their high energy density, abundant material resources, and economic efficiency. However, their practical application remains challenged by sluggish conversion kinetics, polysulfide shuttling, and low sulfur cathode utilization. While extensive studies have focused on enhancing polysulfide adsorption through catalytic strategies, the roles of electronic structure in dictating catalytic performance remain underexplored. Here, this work unveils the critical effect of unpaired electronic structure on the catalytic performance of single atom ferromagnetic transition metals through a systematic evaluation of three typical atomically dispersed ferromagnetic single atoms-Fe, Co, and Ni-supported on porous carbon (denoted as PC-SAFAs). Comprehensive characterizations and density functional theory (DFT) calculations reveal that the PC-SAFe catalysts, exhibiting the highest spin polarization arising from unpaired electrons, demonstrate the strongest interactions with polysulfide, thereby facilitating rapid and reversible polysulfide conversion reactions. Consequently, Al-S batteries incorporating the optimized PC-SAFe cathode achieve an impressive specific capacity of 508.8 mAh g at 1.0 A g after 500 cycles, along with much improved rate capability. This work provides a deeper understanding of the role of electronic structure in catalytic chemistry, and offers new insights for developing high-performance Al-S batteries.
可充电铝硫电池(Al-S)因其高能量密度、丰富的材料资源和经济效益,正成为锂离子电池之外一种有前景的替代储能系统。然而,其实际应用仍面临转化动力学缓慢、多硫化物穿梭和硫阴极利用率低等挑战。尽管广泛的研究集中在通过催化策略增强多硫化物吸附,但电子结构在决定催化性能方面的作用仍未得到充分探索。在此,这项工作通过对负载在多孔碳上的三种典型原子分散铁磁单原子——Fe、Co和Ni(表示为PC-SAFAs)进行系统评估,揭示了未成对电子结构对单原子铁磁过渡金属催化性能的关键影响。综合表征和密度泛函理论(DFT)计算表明,PC-SAFe催化剂由于未成对电子表现出最高的自旋极化,与多硫化物表现出最强的相互作用,从而促进快速且可逆的多硫化物转化反应。因此,采用优化的PC-SAFe阴极的Al-S电池在1.0 A g下500次循环后实现了令人印象深刻的508.8 mAh g的比容量,同时倍率性能也有显著改善。这项工作深入理解了电子结构在催化化学中的作用,并为开发高性能Al-S电池提供了新的见解。