Park Juhyeon, Theerthagiri Jayaraman, Yodsin Nuttapon, Limphirat Wanwisa, Junmon Piyapa, Choi Myong Yong
Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.
Adv Mater. 2025 Jul;37(30):e2506137. doi: 10.1002/adma.202506137. Epub 2025 May 2.
Dual single-atom catalysts (DSACs) hold immense potential in electrochemical nitrate (NO ) reduction (EcNR) as a sustainable replacement to the Haber-Bosch process for the production of ammonia (NH). However, challenges such as synthesis complexity, low purity, scalability, and stability have hindered their practical application. Herein, a rapid and scalable method is introduced to stabilize low-cost 3d transition metals (Ni and Co) as DSACs on TiCT MXene in 10 min using continuous-wave CO-laser irradiation. Ni and Co ions are chelated and stabilized as single atoms onto an L-tryptophan-modified TiCT surface via metal─O and metal─N bonds, forming Ni-single atom catalyst (SAC)/MXene, Co-SAC/MXene, and NiCo-DSAC/MXene. This approach enhances MXene properties, enabling the synthesis of efficient atomic-level electrocatalysts. Potential-resolved in situ Raman spectroelectrochemistry and density functional theory reveal that EcNR proceeds through NO reduction to NO, NO, NH, and NH intermediates, ultimately forming NH via final protonation step. This process exhibits a low limiting potential of -0.37 V, with NO protonation identified as the critical step. NiCo-DSAC/MXene exhibited superior EcNR performance for NH production in 1.0 M potassium hydroxide with sustained multiple cyclic stability. Furthermore, this catalyst is integrated into a Zn-NO a battery that simultaneously removes NO , generates energy, and synthesizes NH.
双单原子催化剂(DSACs)在电化学硝酸盐(NO)还原(EcNR)中具有巨大潜力,可作为哈伯-博施法生产氨(NH)的可持续替代方法。然而,诸如合成复杂性、低纯度、可扩展性和稳定性等挑战阻碍了它们的实际应用。在此,引入了一种快速且可扩展的方法,通过连续波CO激光辐照,在10分钟内将低成本的3d过渡金属(Ni和Co)稳定为TiCT MXene上的DSACs。Ni和Co离子通过金属-氧键和金属-氮键螯合并稳定为单原子,附着在L-色氨酸修饰的TiCT表面,形成Ni单原子催化剂(SAC)/MXene、Co-SAC/MXene和NiCo-DSAC/MXene。这种方法增强了MXene的性能,能够合成高效的原子级电催化剂。电位分辨原位拉曼光谱电化学和密度泛函理论表明,EcNR通过将NO还原为NO、NO、NH和NH中间体进行,最终通过最终质子化步骤形成NH。这个过程的极限电位低至-0.37 V,其中NO质子化被确定为关键步骤。NiCo-DSAC/MXene在1.0 M氢氧化钾中表现出优异的EcNR产氨性能,并具有持续的多次循环稳定性。此外,这种催化剂被集成到一个Zn-NO电池中,该电池可同时去除NO、产生能量并合成NH。