Suppr超能文献

分泌型钙结合磷蛋白在牙齿矿化中的作用。

Functions of secretory calcium-binding phosphoproteins in dental mineralization.

作者信息

Chun Yong-Hee P, Foster Brian L, Liang Tian, Kawasaki Kazuhiko

机构信息

Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States.

Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States.

出版信息

J Bone Miner Res. 2025 Jul 28;40(8):909-930. doi: 10.1093/jbmr/zjaf062.

Abstract

Biomineralization of skeletal and dental tissues has evolved via a suite of regulatory extracellular matrix proteins. The secretory calcium-binding phosphoproteins (SCPPs) are encoded by genes that arose by duplication. In the human genome, 23 SCPP genes have been identified, and 2 groups of SCPPs regulate dental mineralization: bone, dentin, and/or cementum matrix proteins and enamel proteins. In the past 2 decades, the functional roles of SCPPs in dental mineralization have been revealed by studies of human disorders and genetically edited mice. Five enamel SCPPs, amelogenin (AMEL), enamelin (ENAM), ameloblastin (AMBN), odontogenic ameloblast associated (ODAM), and amelotin (AMTN), are secreted by ameloblasts during sequentially arranged stages of amelogenesis. Sequence variants in 4 of the enamel SCPP genes (AMEL, ENAM, AMBN, and AMTN) have been associated with inherited malformations of enamel, termed amelogenesis imperfecta. Loss-of-function variants contribute to enamel of reduced thickness and/or mineral density. Two bone/dentin/cementum SCPPs, dentin matrix protein 1 and dentin sialophosphoprotein (DSPP), are critical for dentin mineralization. Functional studies in genetically edited mice imply that dentin sialoprotein (the N-terminal fragment of DSPP) promotes the propagation of mineralization, and that dentin phosphoprotein (the C-terminal fragment of DSPP) is essential for the fusion and the increase of mineral density of calcospherites. Pathogenic variants in DSPP can cause 2 distinct entities of isolated hereditary dentinogenesis imperfecta. Bone sialoprotein (BSP) and osteopontin are markers of cementum (and bone) in multiple species. Global ablation of BSP in mice resulted in acellular cementum hypoplasia, hypomineralized alveolar bone and breakdown of periodontal function. Osteopontin appears to have a more complex role in regulating mineralized tissues via several direct and indirect mechanisms. Research into SCPPs has provided new insights into the evolution of biomineralization, normal dental development, and inherited disorders, as well as translational directions for tissue repair and regeneration.

摘要

骨骼和牙齿组织的生物矿化是通过一系列细胞外基质调节蛋白进化而来的。分泌型钙结合磷蛋白(SCPPs)由通过基因复制产生的基因编码。在人类基因组中,已鉴定出23个SCPP基因,其中两组SCPPs调节牙齿矿化:骨、牙本质和/或牙骨质基质蛋白以及釉质蛋白。在过去20年中,通过对人类疾病和基因编辑小鼠的研究,揭示了SCPPs在牙齿矿化中的功能作用。五种釉质SCPPs,即釉原蛋白(AMEL)、釉蛋白(ENAM)、成釉蛋白(AMBN)、牙源性成釉细胞相关蛋白(ODAM)和成釉蛋白(AMTN),在釉质形成的顺序排列阶段由成釉细胞分泌。釉质SCPP基因中的4个(AMEL、ENAM、AMBN和AMTN)的序列变异与遗传性釉质畸形有关,称为釉质发育不全。功能丧失变异导致釉质厚度和/或矿物质密度降低。两种骨/牙本质/牙骨质SCPPs,牙本质基质蛋白1和牙本质涎磷蛋白(DSPP),对牙本质矿化至关重要。对基因编辑小鼠的功能研究表明,牙本质涎蛋白(DSPP的N端片段)促进矿化的传播,而牙本质磷蛋白(DSPP的C端片段)对于钙球的融合和矿物质密度的增加至关重要。DSPP中的致病变异可导致两种不同类型的孤立性遗传性牙本质发育不全。骨涎蛋白(BSP)和骨桥蛋白是多种物种中牙骨质(和骨)的标志物。小鼠中BSP的整体缺失导致无细胞牙骨质发育不全、矿化不足的牙槽骨和牙周功能破坏。骨桥蛋白似乎通过几种直接和间接机制在调节矿化组织中发挥更复杂的作用。对SCPPs的研究为生物矿化的进化、正常牙齿发育和遗传性疾病提供了新的见解,以及组织修复和再生的转化方向。

相似文献

4
10
Accelerated enamel mineralization in Dspp mutant mice.Dspp突变小鼠中牙釉质矿化加速
Matrix Biol. 2016 May-Jul;52-54:246-259. doi: 10.1016/j.matbio.2016.01.003. Epub 2016 Jan 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验