Chen Hong, Zhao Lu-Kang, Li She-Dong, Ren Teng, Cheng Xue-Jiao, Gao Xuan-Wen, Liu Zhao-Meng, Yang Dong-Run, Ren Tian-Zhen, Luo Wen-Bin
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning 110819, China.
School of Mechanical Engineering, Shenyang University of Technology, Liaoning 110819, China.
J Colloid Interface Sci. 2025 Oct;695:137733. doi: 10.1016/j.jcis.2025.137733. Epub 2025 Apr 28.
Layered manganese-based transition metal (TM) oxides exhibit great potential as cathodes for potassium-ion batteries (PIBs) due to their cost-effectiveness, high efficiency, and facile synthesis. However, structural transformations and transition metal migration severely limit their broader energy storage applications. This study introduces a strategy to mitigate these issues by incorporating molybdenum as a dopant into the cathode material KMnO. The incorporation of Mo into TM sites of KMnO stabilizes the crystal structure by mitigating Mn dissolution through Mn-O-Mo bond formation and alleviating Jahn-Teller effects. These effects effectively suppress interlayer slip of metal oxide layers and alleviate frequent occurrence of phase transformations, stabilizing the octahedral structure and enhancing the K diffusion rate. As a result, KMnMoO (KMMO), synthesized via solid-state sintering using MoO as the Mo source, exhibits superior discharge capacity of 71.93 mAh g at 1C after 500 cycles. The energy density is significantly improved from 175.48 Wh/kg (for KMO) to 224.87 Wh/kg (for KMMO). Additionally, a full-cell configuration employing KMMO as the cathode and nano-graphite as the anode demonstrates a discharge specific capacity of 67.8 mAh g at 0.5 C. The present study highlights the potential of effective structural regulation of layered oxides through the incorporation of appropriate metallic elements.
层状锰基过渡金属(TM)氧化物因其成本效益高、效率高和合成简便,作为钾离子电池(PIB)的阴极具有巨大潜力。然而,结构转变和过渡金属迁移严重限制了它们更广泛的储能应用。本研究引入了一种策略,通过将钼作为掺杂剂掺入阴极材料KMnO中来缓解这些问题。将Mo掺入KMnO的TM位点,通过形成Mn-O-Mo键减轻Mn溶解并减轻 Jahn-Teller 效应,从而稳定晶体结构。这些效应有效地抑制了金属氧化物层的层间滑移,减轻了相变的频繁发生,稳定了八面体结构并提高了K扩散速率。结果,通过以MoO为Mo源通过固态烧结合成的KMnMoO(KMMO)在500次循环后在1C下表现出71.93 mAh g的优异放电容量。能量密度从175.48 Wh/kg(对于KMO)显著提高到224.87 Wh/kg(对于KMMO)。此外,采用KMMO作为阴极和纳米石墨作为阳极的全电池配置在0.5 C下表现出67.8 mAh g的放电比容量。本研究突出了通过掺入适当的金属元素对层状氧化物进行有效结构调控的潜力。