Suppr超能文献

基于深度学习的以学生为中心的人工智能在线音乐学习平台建设

The construction of student-centered artificial intelligence online music learning platform based on deep learning.

作者信息

Xia Ruiqing, Li Jiayin, Li Haiying

机构信息

Department of Education, Tianjin Normal University, Tianjin, 300387, China.

Faculty of Creative Arts, University of Malaya, Kuala Lumpur, 50603, Malaysia.

出版信息

Sci Rep. 2025 May 3;15(1):15539. doi: 10.1038/s41598-025-95729-w.

Abstract

Aiming at the student-centered online music learning platform, this study proposes a Course Recommendation Model for Student Learning Interest Evolution (CRM-SLIE) to improve the accuracy and adaptability of the platform's course recommendation. This model combines attention mechanism and Gated Recurrent Unit (GRU), and introduces project crossing module, which can effectively capture students' interest changes and second-order characteristic interaction among courses. The experimental results show that the CRM-SLIE model has excellent performance under different embedding dimensions and the length of student behavior sequence. Especially when the embedding dimension is 64, the Area Under the Curve (AUC) of the model is the highest, and the performance tends to be stable when the sequence length is 20, which is 0.872. Further recall experiments show that with the increase of the number of recommendations, the highest recall rate of CRM-SLIE is 0.364, which is better than other comparative models and can better meet the learning needs of students. In addition, the results of ablation experiments show that the position coding and the way of item crossing have a significant impact on the model performance, and the combination of inner product and Hadamard product is particularly effective in capturing the complex relationship among courses. The research shows that CRM-SLIE model has strong adaptability, robustness and practical application value in the course recommendation task, and can provide personalized and accurate learning resource recommendation for online music learning platform.

摘要

针对以学生为中心的在线音乐学习平台,本研究提出了一种学生学习兴趣演变课程推荐模型(CRM-SLIE),以提高平台课程推荐的准确性和适应性。该模型结合了注意力机制和门控循环单元(GRU),并引入了项目交叉模块,能够有效捕捉学生的兴趣变化以及课程之间的二阶特征交互。实验结果表明,CRM-SLIE模型在不同的嵌入维度和学生行为序列长度下均具有优异的性能。特别是当嵌入维度为64时,模型的曲线下面积(AUC)最高,当序列长度为20时性能趋于稳定,为0.872。进一步的召回实验表明,随着推荐数量的增加,CRM-SLIE的最高召回率为0.364,优于其他对比模型,能够更好地满足学生的学习需求。此外,消融实验结果表明,位置编码和项目交叉方式对模型性能有显著影响,内积和哈达玛积的组合在捕捉课程之间的复杂关系方面特别有效。研究表明,CRM-SLIE模型在课程推荐任务中具有较强的适应性、鲁棒性和实际应用价值,能够为在线音乐学习平台提供个性化、准确的学习资源推荐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5b3/12049451/ac24d78af92a/41598_2025_95729_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验