Suppr超能文献

将信息挖掘技术应用于在线创业培训课程。

Applying information mining technology in online entrepreneurship training course.

作者信息

Fang Jinqiang, Jia Weichen

机构信息

Logistics Support Service, Lianyungang Technical College, Lianyungang, 222000, China.

School of Media and Law, Ningbo Tech University, Ningbo, 315000, China.

出版信息

Sci Rep. 2024 Sep 30;14(1):22740. doi: 10.1038/s41598-024-73491-9.

Abstract

The purpose of this study is to deeply explore the application of information mining technology in online entrepreneurship training courses, and to improve students' learning effects and entrepreneurship success rate through systematic analysis and optimization of key data in the teaching process. With the development of online education, how to effectively use big data technology to meet personalized learning needs has become an important issue. This study takes several online entrepreneurship training courses as the research object, and uses information mining technology to extract and analyze students' behavioral data during course participation, including data on study time, interaction frequency, assessment results, etc. Through machine learning algorithms and association rule mining, the research revealed the main factors that affect students' learning effects and entrepreneurial success, and designed targeted teaching strategies, such as dynamically adjusting learning content, providing personalized feedback, optimizing learning paths, etc. Experimental results show that online courses using information mining technology significantly improve students' knowledge mastery and entrepreneurial success rate, especially in terms of personalized learning experience and teaching efficiency. In addition, this study also explores the application prospects of information mining technology in future online education. It is believed that through the combination with artificial intelligence (AI) technology, the intelligence and adaptability of online courses can be further enhanced to meet more diversified learning needs.

摘要

本研究的目的是深入探索信息挖掘技术在在线创业培训课程中的应用,并通过对教学过程中的关键数据进行系统分析和优化,提高学生的学习效果和创业成功率。随着在线教育的发展,如何有效利用大数据技术满足个性化学习需求已成为一个重要问题。本研究以几门在线创业培训课程为研究对象,利用信息挖掘技术提取和分析学生在课程参与过程中的行为数据,包括学习时间、互动频率、评估结果等数据。通过机器学习算法和关联规则挖掘,研究揭示了影响学生学习效果和创业成功的主要因素,并设计了针对性的教学策略,如动态调整学习内容、提供个性化反馈、优化学习路径等。实验结果表明,使用信息挖掘技术的在线课程显著提高了学生的知识掌握程度和创业成功率,特别是在个性化学习体验和教学效率方面。此外,本研究还探讨了信息挖掘技术在未来在线教育中的应用前景。相信通过与人工智能(AI)技术相结合,在线课程的智能性和适应性可以进一步增强,以满足更多样化的学习需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a7f/11442471/4cbd128868bd/41598_2024_73491_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验