Suppr超能文献

从无机材料到象牙检测的迁移学习。

Transfer learning from inorganic materials to ivory detection.

作者信息

Aghasanli Agil, Angelov Plamen, Kangin Dmitry, Kerns Jemma, Shepherd Rebecca

机构信息

School of Computing and Communications, Lancaster University, Bailrigg, Lancaster, Lancashire, LA1 4YW, UK.

Lancaster Medical School, Lancaster University, Bailrigg, Lancaster, Lancashire, LA1 4AT, UK.

出版信息

Sci Rep. 2025 May 3;15(1):15536. doi: 10.1038/s41598-025-98915-y.

Abstract

This paper describes the automatic identification of ivory using Raman spectroscopy data and deep neural network (DNN) models pre-trained on open-source data from inorganic minerals. The proposed approach uses transfer learning (TL) from foundation models trained on a larger inorganic (minerals) spectroscopy dataset (MLROD). The results demonstrate, for the first time, the ability to transfer machine learning (ML) models from a Raman spectroscopy dataset of geological substances to classify biological ivory samples. Current identification methods, such as DNA analysis and radiocarbon dating, are costly and destructive. Recently, it was demonstrated that the use of Raman spectroscopy, a laser-based, non-destructive technique, in combination with well-known statistical techniques, has the potential to differentiate between mammoth and elephant ivory. However, this previous study had a small sample size due to difficulties in obtaining large amounts of labeled ivory data. To date, there has been no reported work on ivory classification using DNNs, and only limited studies using Raman spectra. The work proposed in this paper suggests that ML can provide high levels of accuracy in the classification of Raman spectroscopy data from ivory samples of different elephant species (up to 99.7%). This has the potential to create a quick and inexpensive method of identifying legal and illegal types of ivory to aid in enforcement of ivory trade bans. This study also demonstrated that DNN models initially pre-trained on inorganic minerals (from the MLROD dataset) that were not finetuned on ivory data had a high accuracy rate of 92%, alleviating the need for large amounts of training data from ivory specimens. Finally, the approach proposed in this paper, provides insight into the decision making and interpretation of the results using prototype-based models. This novel work demonstrates that: (1) ML methods can provide highly accurate classification of ivory from different species of elephant using data obtained using Raman spectroscopy and providing insight into the decision making (2) TL enables re-purposing the models trained on larger mineral datasets of inorganic materials (such as MLROD) to discriminating between the classes of ivory, containing inorganic and organic biological components, for the first time transgressing between non-biological and biological samples (3) the proposed method allows both training from labelled samples of ivory and the identification of unknown ivory samples through prototype-based methods.

摘要

本文介绍了利用拉曼光谱数据和基于开源无机矿物数据预训练的深度神经网络(DNN)模型自动识别象牙的方法。所提出的方法采用了从在更大的无机(矿物)光谱数据集(MLROD)上训练的基础模型进行迁移学习(TL)。结果首次证明了将机器学习(ML)模型从地质物质的拉曼光谱数据集迁移到对生物象牙样本进行分类的能力。当前的识别方法,如DNA分析和放射性碳测年,成本高且具有破坏性。最近,有人证明,将基于激光的非破坏性技术拉曼光谱与著名的统计技术相结合,有潜力区分猛犸象牙和大象象牙。然而,由于难以获得大量带标签的象牙数据,之前的这项研究样本量较小。迄今为止,尚无关于使用DNN进行象牙分类的报道工作,且使用拉曼光谱的研究也很有限。本文提出的工作表明,ML可以在对来自不同大象物种的象牙样本的拉曼光谱数据进行分类时提供高水平的准确率(高达99.7%)。这有可能创造一种快速且廉价的方法来识别合法和非法类型的象牙,以协助执行象牙贸易禁令。这项研究还表明,最初在无机矿物(来自MLROD数据集)上预训练且未在象牙数据上进行微调的DNN模型具有92%的高准确率,从而减少了对象牙样本大量训练数据的需求。最后,本文提出的方法为使用基于原型的模型进行结果的决策和解释提供了思路。这项新颖的工作表明:(1)ML方法可以使用通过拉曼光谱获得的数据,对来自不同大象物种的象牙进行高度准确的分类,并为决策提供思路;(2)TL能够将在更大的无机材料矿物数据集(如MLROD)上训练的模型重新用于区分包含无机和有机生物成分的象牙类别,首次跨越非生物和生物样本之间的界限;(3)所提出的方法既允许从带标签的象牙样本进行训练,又能通过基于原型的方法识别未知的象牙样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8735/12049420/8ad5a5060b86/41598_2025_98915_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验