Suppr超能文献

使用DFT-D3对用于传感G系列神经毒剂的原始和锂掺杂BN纳米笼进行的分子建模研究。

A molecular modeling study of pristine and Li-doped BN nanocages for sensing G-series nerve agents using DFT-D3.

作者信息

Rizwan Hafiz Ali, Khan Muhammad Usman, Anwar Abida, Idrees Munazza, Siddiqui Nasir A

机构信息

Department of Chemistry, University of Okara, Okara, 56300, Pakistan.

Department of Chemistry, University of Okara, Okara, 56300, Pakistan.

出版信息

J Mol Graph Model. 2025 Sep;139:109069. doi: 10.1016/j.jmgm.2025.109069. Epub 2025 Apr 30.

Abstract

The detection and removal of toxic warfare agents, such as G-series nerve agents, is a critical area of research for environmental safety and public health. This research uses density functional theory (DFT) to address the gap in understanding the molecular-level interactions of G-series nerve agents with boron nitride nanocages (BNNC) and lithium-doped boron nitride nanocages (Li-BNNC). The investigated nanostructures exhibited high negative adsorption energies, allowing the G-series nerve agents to adsorb strongly onto the BNNC and Li-BNNC surfaces. The Li-BNNC complexes undergo the chemisorption process with the adsorption energy, ranging from -31.819 kcal/mol to -33.635 kcal/mol. The findings of frontier molecular orbitals (FMOs) and density of states (DOS) indicated that the electronic characteristics of GS@BNNC and GS@Li-BNNC had been significantly changed, resulting in a smaller energy gap and higher conductivity. The Li-doping results in much lower energy gaps in Li-BNNC systems, such as 2.707 eV for Tabun@Li-BNNC, that cause higher electrical conductivity. Tabun@Li-BNNC has the highest electrical conductivity of 4.60 × 10 among Li-doped systems, and Tabun@BNNC has a high conductivity of 2.84 × 10 among undoped BNNC systems. Li-BNNC systems have higher electrical conductivity, which makes them good sensors for detecting G-series nerve agents. These findings provide a molecular-level understanding of the effect of Li-doping on BNNC-based nanomaterials and their potential for advancing nanotechnology-driven gas sensors.

摘要

检测和去除诸如G系列神经毒剂等有毒战剂,是环境安全和公共卫生领域的一个关键研究方向。本研究采用密度泛函理论(DFT)来填补在理解G系列神经毒剂与氮化硼纳米笼(BNNC)和锂掺杂氮化硼纳米笼(Li-BNNC)之间分子水平相互作用方面的空白。所研究的纳米结构表现出高负吸附能,使得G系列神经毒剂能够强烈吸附在BNNC和Li-BNNC表面。Li-BNNC络合物通过化学吸附过程,吸附能范围为-31.819千卡/摩尔至-33.635千卡/摩尔。前线分子轨道(FMO)和态密度(DOS)的研究结果表明,GS@BNNC和GS@Li-BNNC的电子特性发生了显著变化,导致能隙变小和电导率提高。锂掺杂使得Li-BNNC体系中的能隙大幅降低,例如塔崩@Li-BNNC的能隙为2.707电子伏特,这导致了更高的电导率。在锂掺杂体系中,塔崩@Li-BNNC的电导率最高,为4.60×10 ;在未掺杂的BNNC体系中,塔崩@BNNC具有2.84×10 的高电导率。Li-BNNC体系具有更高的电导率,这使其成为检测G系列神经毒剂的良好传感器。这些发现提供了关于锂掺杂对基于BNNC的纳米材料的影响及其在推进纳米技术驱动的气体传感器方面潜力的分子水平理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验