Kuntic Marin, Kuntic Ivana, Cleppien Dirk, Pozzer Andrea, Nußbaum David, Oelze Matthias, Junglas Tristan, Strohm Lea, Ubbens Henning, Daub Steffen, Bayo Jimenez Maria Teresa, Danckwardt Sven, Berkemeier Thomas, Hahad Omar, Kohl Matthias, Steven Sebastian, Stroh Albrecht, Lelieveld Jos, Münzel Thomas, Daiber Andreas
University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany.
Redox Biol. 2025 Jun;83:103644. doi: 10.1016/j.redox.2025.103644. Epub 2025 Apr 22.
Particulate matter (PM) poses a significant risk to human health; however, it remains uncertain which size fraction is especially harmful and what mechanisms are involved. We investigated the varying effects of particle size on specific organ systems using a custom mouse exposure system and synthetic PM (SPM). Whole-body exposure of mice showed that micrometer-sized fine SPM (2-4 μm) accumulated in the lungs, the primary entry organ, while nanometer-sized SPM (<250 nm) did not accumulate, suggesting a transition into circulation. Mice exposed to micro-SPM exhibited inflammation and NADPH oxidase-derived oxidative stress in the lungs. In contrast, nano-SPM-exposed mice did not display oxidative stress in the lungs but rather at the brain, heart, and vascular levels, supporting the hypothesis that they penetrate the lungs and reach the circulation. Sources of reactive oxygen species from micro-SPM in the lung are NOX1 and NOX2, driven by pulmonary inflammation, while oxidative stress from nano-SPM in the heart is mediated by protein kinase C-dependent p47 phosphorylation, leading to NOX2 activation in infiltrated monocytes. Endothelial dysfunction and increased blood pressure were more pronounced in nano-SPM-exposed mice, also supported by elevated endothelin-1 and reduced endothelial nitric oxide synthase expression, which enhances constriction and diminishes vasodilation. Further, we estimated the cardiovascular disease burden of nano-particles in humans based on global exposure data and hazard ratios from an epidemiological cohort study. These results provide novel insights into the disease burdens of inhaled nano- and micro-particles (corresponding to fine and ultrafine categories), guiding future studies.
颗粒物(PM)对人类健康构成重大风险;然而,哪种粒径部分尤其有害以及涉及哪些机制仍不确定。我们使用定制的小鼠暴露系统和合成颗粒物(SPM)研究了粒径对特定器官系统的不同影响。对小鼠进行全身暴露显示,微米级的细SPM(2 - 4μm)积聚在作为主要进入器官的肺中,而纳米级的SPM(<250nm)则不积聚,这表明其进入了循环系统。暴露于微SPM的小鼠肺部出现炎症以及NADPH氧化酶衍生的氧化应激。相比之下,暴露于纳米SPM的小鼠肺部未显示氧化应激,而是在脑、心脏和血管水平出现,这支持了它们穿透肺部并进入循环系统的假设。肺部微SPM产生活性氧的来源是由肺部炎症驱动的NOX1和NOX2,而心脏中纳米SPM产生的氧化应激由蛋白激酶C依赖的p47磷酸化介导,导致浸润单核细胞中的NOX2激活。纳米SPM暴露的小鼠内皮功能障碍和血压升高更为明显,内皮素 - 1升高和内皮型一氧化氮合酶表达降低也支持了这一点,这会增强血管收缩并减少血管舒张。此外,我们根据全球暴露数据和一项队列流行病学研究的风险比估计了纳米颗粒对人类心血管疾病的负担。这些结果为吸入的纳米颗粒和微米颗粒(分别对应细颗粒和超细颗粒类别)的疾病负担提供了新的见解,为未来的研究提供了指导。
Part Fibre Toxicol. 2014-9-17
Ecotoxicol Environ Saf. 2015-9-29
Res Rep Health Eff Inst. 2011-12
Toxicol Appl Pharmacol. 2009-4-15
Am J Physiol Heart Circ Physiol. 2021-10-1
IEEE Trans Nanobioscience. 2007-12
Arterioscler Thromb Vasc Biol. 2010-9-23
Antioxidants (Basel). 2025-6-27
Am J Respir Crit Care Med. 2024-12-1