Li Fen-Fen, Li Gao-Xiang, Yu Xin-Xin, Zhang Zu-Hui, Fu Ya-Na, Wu Shuang-Qing, Wang Ying, Xiao Chun, Ye Yu-Feng, Hu Min, Dai Qi
National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, PR China.
Beijing Normal University, School of Artificial Intelligence, Beijing, PR China.
Comput Methods Programs Biomed. 2025 Jul;267:108814. doi: 10.1016/j.cmpb.2025.108814. Epub 2025 Apr 28.
Artificial intelligence (AI) models are effective for analyzing high-quality slit-lamp images but often face challenges in real-world clinical settings due to image variability. This study aims to develop and evaluate a hybrid AI-based image quality control system to classify slit-lamp images, improving diagnostic accuracy and efficiency, particularly in telemedicine applications.
Cross-sectional study.
Our Zhejiang Eye Hospital dataset comprised 2982 slit-lamp images as the internal dataset. Two external datasets were included: 13,554 images from the Aier Guangming Eye Hospital (AGEH) and 9853 images from the First People's Hospital of Aksu District in Xinjiang (FPH of Aksu). We developed a Hybrid Prior-Net (HP-Net), a novel network that combines a ResNet-based classification branch with a prior knowledge branch leveraging Hough circle transform and frequency domain blur detection. The two branches' features are channel-wise concatenated at the fully connected layer, enhancing representational power and improving the network's ability to classify eligible, misaligned, blurred, and underexposed corneal images. Model performance was evaluated using metrics such as accuracy, precision, recall, specificity, and F1-score, and compared against the performance of other deep learning models.
The HP-Net outperformed all other models, achieving an accuracy of 99.03 %, precision of 98.21 %, recall of 95.18 %, specificity of 99.36 %, and an F1-score of 96.54 % in image classification. The results demonstrated that HP-Net was also highly effective in filtering slit-lamp images from the other two datasets, AGEH and FPH of Aksu with accuracies of 97.23 % and 96.97 %, respectively. These results underscore the superior feature extraction and classification capabilities of HP-Net across all evaluated metrics.
Our AI-based image quality control system offers a robust and efficient solution for classifying corneal images, with significant implications for telemedicine applications. By incorporating slightly blurred but diagnostically usable images into training datasets, the system enhances the reliability and adaptability of AI tools for medical imaging quality control, paving the way for more accurate and efficient diagnostic workflows.
人工智能(AI)模型在分析高质量裂隙灯图像方面很有效,但在现实临床环境中,由于图像的变异性,常常面临挑战。本研究旨在开发并评估一种基于AI的混合图像质量控制系统,用于对裂隙灯图像进行分类,提高诊断准确性和效率,尤其是在远程医疗应用中。
横断面研究。
我们的浙江眼科医院数据集包含2982张裂隙灯图像作为内部数据集。纳入了两个外部数据集:爱尔光明眼科医院(AGEH)的13554张图像和新疆阿克苏地区第一人民医院(阿克苏地区第一人民医院)的9853张图像。我们开发了一种混合先验网络(HP-Net),这是一种新颖的网络,它将基于ResNet的分类分支与利用霍夫圆变换和频域模糊检测的先验知识分支相结合。两个分支的特征在全连接层进行通道级拼接,增强了表征能力,提高了网络对合格、未对齐、模糊和曝光不足的角膜图像进行分类的能力。使用准确率、精确率、召回率、特异性和F1分数等指标评估模型性能,并与其他深度学习模型的性能进行比较。
HP-Net在所有其他模型中表现最佳,在图像分类中实现了99.03%的准确率、98.21%的精确率、95.18%的召回率、99.36%的特异性和96.54%的F1分数。结果表明,HP-Net在从AGEH和阿克苏地区第一人民医院的其他两个数据集中过滤裂隙灯图像方面也非常有效,准确率分别为97.23%和96.97%。这些结果突出了HP-Net在所有评估指标上卓越的特征提取和分类能力。
我们基于AI的图像质量控制系统为角膜图像分类提供了一种强大而高效的解决方案,对远程医疗应用具有重要意义。通过将略微模糊但仍可用于诊断的图像纳入训练数据集,该系统提高了AI工具用于医学成像质量控制的可靠性和适应性,为更准确、高效的诊断工作流程铺平了道路。