Suppr超能文献

一种简单且可及的糖尿病视网膜病变风险预测模型:在以医院为基础的2型糖尿病患者队列中的建立与验证

A simple and accessible diabetic retinopathy risk prediction model: Establishment and validation in a hospital-based cohort of type 2 diabetes patients.

作者信息

Gao Juan-Juan, Liu Hui, Zhang Tian-Yi, Wang Ya-Wen

机构信息

Biobank, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an 710061 Shaanxi, China; Shaanxi Engineering Research Center for Biobank and Advanced Medical Research, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 Shaanxi, China; International Obesity and Metabolic Disease Research Center (IOMC), Xi'an Jiaotong University, Xi'an 710061, China.

Biobank, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an 710061 Shaanxi, China; Shaanxi Engineering Research Center for Biobank and Advanced Medical Research, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 Shaanxi, China.

出版信息

Diabetes Res Clin Pract. 2025 Jun;224:112211. doi: 10.1016/j.diabres.2025.112211. Epub 2025 May 2.

Abstract

AIMS

Diabetic retinopathy (DR) is a leading cause of vision loss, with early detection challenging due to asymptomatic progression and limited predictive tools. To address this, we aimed to develop and validate a risk nomogram for DR prediction in type 2 diabetes patients.

METHODS

In this retrospective cohort study of 70,073 patients with type 2 diabetes admitted from 2013 to 2019, 2,585 patients were included after exclusions. Patients were randomly assigned to derivation (2/3) and validation (1/3) sets. The prediction model was derived using Cox proportional hazards regression. A nomogram was developed and evaluated for discriminatory capacity and calibration accuracy.

RESULTS

Among 2585 participants (mean age 59 years), 220 (8.5 %) developed retinopathy over a median follow-up of 34 months. We identified key predictors: glycated haemoglobin A1c, serum urea, and diabetes duration. Predictive models for 1-, 3-, and 5-year retinopathy-free survival were constructed and presented as a nomogram, demonstrating good discriminatory power (AUC: 0.941, 0.886, 0.594 in derivation; 0.747, 0.736, 0.670 in validation). Calibration plots further corroborated the improved fit for 3- and 5-year models.

CONCLUSIONS

The proposed model shows promise for guiding early interventions and improving outcomes. Further external validation is needed to confirm its applicability across diverse populations.

摘要

目的

糖尿病视网膜病变(DR)是导致视力丧失的主要原因,由于其无症状进展且预测工具有限,早期检测具有挑战性。为解决这一问题,我们旨在开发并验证一种用于预测2型糖尿病患者DR风险的列线图。

方法

在这项对2013年至2019年收治的70073例2型糖尿病患者进行的回顾性队列研究中,排除后纳入2585例患者。患者被随机分配到推导组(2/3)和验证组(1/3)。使用Cox比例风险回归推导预测模型。开发了一个列线图,并对其判别能力和校准准确性进行了评估。

结果

在2585名参与者(平均年龄59岁)中,在中位随访34个月期间,220人(8.5%)发生了视网膜病变。我们确定了关键预测因素:糖化血红蛋白A1c、血清尿素和糖尿病病程。构建了1年、3年和5年无视网膜病变生存的预测模型,并以列线图形式呈现,显示出良好的判别能力(推导组的AUC分别为0.941、0.886、0.594;验证组的AUC分别为0.747、0.736、0.670)。校准图进一步证实了3年和5年模型的拟合度有所提高。

结论

所提出的模型在指导早期干预和改善预后方面显示出前景。需要进一步的外部验证来确认其在不同人群中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验