Jegan Roohum, Kaushal Bhakti, Birajdar Gajanan K, Patil Mukesh D
Department of Artificial Intelligence and Machine Learning, Saraswati College of Engineering, Navi Mumbai, India.
Department of Electronics and Communication Engineering, Ramrao Adik Institute of Technology, DY Patil Deemed to be University, Navi Mumbai, India.
Network. 2025 May 4:1-35. doi: 10.1080/0954898X.2025.2500046.
Brain tumour classification plays a significant role in improving patient care, treatment planning, and enhancing the overall healthcare system's effectiveness. This article presents a ResNet framework optimized using Henry gas solubility optimization (HGSO) for the classification of brain tumours, resulting in improved classification performance in magnetic resonance images (MRI). Two variants of the deep residual neural network, namely ResNet-18 and ResNet-50, are trained on the MRI training dataset. The four critical hyperparameters of the ResNet model: momentum, initial learning rate, maximum epochs, and validation frequency are tuned to obtain optimal values using HGSO algorithm. Subsequently, the optimized ResNet model is evaluated using two separate databases: Database1, comprising four tumour classes, and Database2, with three tumour classes. The performance is assessed using accuracy, sensitivity, specificity, precision, and F-score. The highest classification accuracy of 0.9825 is attained using the proposed optimized ResNet-50 framework on Database1. Moreover, the Gradient-weighted Class Activation Mapping (GRAD-CAM) algorithm is utilized to enhance the understanding of deep neural networks by highlighting the regions that are influential in making a particular classification decision. Grad-CAM heatmaps confirm the model focuses on relevant tumour features, not image artefacts. This research enhances MRI brain tumour classification via deep learning optimization strategies.
脑肿瘤分类在改善患者护理、治疗规划以及提高整体医疗系统的有效性方面发挥着重要作用。本文提出了一种使用亨利气体溶解度优化(HGSO)算法优化的残差网络(ResNet)框架,用于脑肿瘤分类,从而提高磁共振成像(MRI)中的分类性能。在MRI训练数据集上训练了深度残差神经网络的两种变体,即ResNet-18和ResNet-50。使用HGSO算法对ResNet模型的四个关键超参数:动量、初始学习率、最大轮次和验证频率进行调优,以获得最优值。随后,使用两个单独的数据库对优化后的ResNet模型进行评估:包含四类肿瘤的数据库1和包含三类肿瘤的数据库2。使用准确率、灵敏度、特异性、精确率和F1分数来评估性能。在数据库1上,使用所提出的优化ResNet-50框架获得了最高0.9825的分类准确率。此外,利用梯度加权类激活映射(GRAD-CAM)算法,通过突出对特定分类决策有影响的区域,增强对深度神经网络的理解。Grad-CAM热图证实该模型关注的是相关肿瘤特征,而非图像伪影。本研究通过深度学习优化策略提高了MRI脑肿瘤分类水平。