Suppr超能文献

撒哈拉以南非洲地区孕妇疟疾感染的空间变异及多层次决定因素:利用疟疾指标调查

Spatial variation and multilevel determinants of malaria infection among pregnant women in Sub-Saharan Africa: using malaria indicator surveys.

作者信息

Zegeye Alebachew Ferede, Mekonen Enyew Getaneh, Gebrehana Deresse Abebe, Tekeba Berhan, Tamir Tadesse Tarik

机构信息

Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

Department of Internal Medicine, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

出版信息

BMC Infect Dis. 2025 May 4;25(1):654. doi: 10.1186/s12879-025-11037-8.

Abstract

BACKGROUND

Malaria remains a major public health challenge in Sub-Saharan Africa, with pregnant women being particularly vulnerable to its adverse effects, including increased risk of maternal and neonatal mortality. Despite significant efforts to control malaria, high infection rates persist, especially in underserved areas. Existing studies have identified individual-level factors as contributors to malaria infection, yet the influence of community-level factors and spatial variations remain underexplored. This study aimed to investigate the spatial variation and multilevel determinants of malaria infection among pregnant women in Sub-Saharan Africa.

METHODS

Data from the Malaria Indicator Surveys across 19 Sub-Saharan African countries were used for analysis. The study included a total of 107,712 pregnant women aged 15-49. Spatial autocorrelation was employed to assess the spatial dependency of malaria infection. Kriging interpolation was used to predict malaria infection in the unsampled areas. Factors associated with malaria infection were considered significant at p-values < 0.05. The adjusted odds ratio and confidence intervals were used to interpret the results. A model with the lowest deviance and highest log-likelihood ratio was selected as the best-fit model.

RESULTS

The pooled prevalence of malaria among pregnant women was 28.31% (95% CI: 27.47, 29.20). Factors associated with higher odds of malaria infection included advanced maternal age (AOR: 1.19, 95% CI: 1.03, 1.37), no formal education (AOR: 1.52, 95% CI: 1.28, 1.80), non-use of bed nets (AOR: 6.63, 95% CI: 3.20, 13.73), use of untreated bed nets (AOR: 4.16, 95% CI: 3.72, 8.49), no use of indoor residual spraying (AOR: 2.07, 95% CI: 1.63, 2.64), rural residence (AOR: 2.11, 95% CI: 1.64, 2.41), and residing in West Sub-Saharan Africa (AOR: 6.58, 95% CI: 5.67, 7.64) were determinants of malaria infection.

CONCLUSIONS

This study revealed a high malaria infection rate among pregnant women in Sub-Saharan Africa, with both individual and community-level factors playing a significant role. Health policies should prioritize targeted interventions for pregnant women, especially in rural areas, with an emphasis on increasing bed net use, indoor residual spraying, and region-specific strategies, particularly in West Sub-Saharan Africa where malaria clustering is notably high.

摘要

背景

疟疾仍然是撒哈拉以南非洲地区面临的一项重大公共卫生挑战,孕妇尤其容易受到其不利影响,包括孕产妇和新生儿死亡风险增加。尽管在控制疟疾方面做出了巨大努力,但高感染率仍然存在,特别是在服务不足的地区。现有研究已确定个体层面的因素是疟疾感染的促成因素,但社区层面的因素和空间差异的影响仍未得到充分探索。本研究旨在调查撒哈拉以南非洲地区孕妇疟疾感染的空间差异和多层次决定因素。

方法

使用来自19个撒哈拉以南非洲国家的疟疾指标调查数据进行分析。该研究共纳入了107712名年龄在15至49岁之间的孕妇。采用空间自相关分析来评估疟疾感染的空间依赖性。使用克里金插值法预测未采样地区的疟疾感染情况。与疟疾感染相关的因素在p值<0.05时被认为具有统计学意义。调整后的优势比和置信区间用于解释结果。选择偏差最低和对数似然比最高的模型作为最佳拟合模型。

结果

孕妇疟疾的合并患病率为28.31%(95%CI:27.47,29.20)。与疟疾感染几率较高相关的因素包括高龄产妇(调整后的优势比:1.19,95%CI:1.03,1.37)、未接受正规教育(调整后的优势比:1.52,95%CI:1.28,1.80)、未使用蚊帐(调整后的优势比:6.63,95%CI:3.20,13.73)、使用未经处理的蚊帐(调整后的优势比:4.16,95%CI:3.72,8.49)、未进行室内滞留喷洒(调整后的优势比:2.07,95%CI:1.63,2.64)、农村居住(调整后的优势比:2.11,95%CI:1.64,2.41)以及居住在撒哈拉以南非洲西部地区(调整后的优势比:6.58,95%CI:5.67,7.64),这些都是疟疾感染的决定因素。

结论

本研究揭示了撒哈拉以南非洲地区孕妇的疟疾感染率很高,个体和社区层面的因素都发挥了重要作用。卫生政策应优先针对孕妇进行有针对性的干预,特别是在农村地区,重点是增加蚊帐的使用、室内滞留喷洒以及制定针对特定地区的策略,尤其是在疟疾聚集现象尤为严重的撒哈拉以南非洲西部地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/780f/12051275/2aba91b424a8/12879_2025_11037_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验