Stuke Jan Felix Maximilian, Hummer Gerhard
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany.
Autophagy. 2025 May 4:1-21. doi: 10.1080/15548627.2025.2493999.
In selective macroautophagy/autophagy, cargo recruitment is mediated by MAP1LC3/LC3-interacting regions (LIRs)/Atg8-family interacting motifs (AIMs) in the cargo or cargo receptor proteins. The binding of these motifs to LC3/Atg8 proteins at the phagophore membrane is often modulated by post-translational modifications, especially phosphorylation. As a challenge for computational LIR predictions, sequences may contain the short canonical (W/F/Y)XX(L/I/V) motif without being functional. Conversely, LIRs may be formed by non-canonical but functional sequence motifs. AlphaFold2 has proven to be useful for LIR predictions, even if some LIRs are missed and proteins with thousands of residues reach the limits of computational feasibility. We present a fragment-based approach to address these limitations. We find that fragment length and phosphomimetic mutations modulate the interactions predicted by AlphaFold2. Systematic fragment screening for a range of target proteins yields structural models for interactions that AlphaFold2 and AlphaFold3 fail to predict for full-length targets. We provide guidance on fragment choice, sequence tuning, LC3 isoform effects, and scoring for optimal LIR screens. Finally, we also test the transferability of this general framework to SUMO-SIM interactions, another type of protein-protein interaction involving short linear motifs (SLiMs).: 2-HP-LIR: ncLIR binding either or both HPs with non-canonical residues; AIM: Atg8-family interacting motif; ap. LIR: antiparallel LIR; .; ; AT5G06830/C53 (.): CDK5RAP3-like protein; Atg8/ATG8: autophagy related 8, in yeast and plants, respectively; ATG8CL: ATG8C-like of (potato); ATG8E: ATG8e of .; Av. num. of contacts: average number of heavy atom contacts; BCL2: BCL2 apoptosis regulator; BNIP3: BCL2 interacting protein 3; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CALR: calreticulin; can. LIR: canonical LIR; CDF: cumulative distribution function; CDK5RAP3/C53 (.): CDK5 regulatory subunit associated protein 3; [DE]W[DE]-LIR: TRIM5-like ncLIR; DSK2A: ubiquitin domain-containing protein DSK2a; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HP0/1/2: hydrophobic pocket 0/1/2; HP0-LIR: ncLIR engaging HP0; .; ; lcLIR: low-confidence LIR (ncLIR not similar to previously characterized ncLIRs); LDS: LIR-docking site; LIR: LC3-interacting region; LO score: length-weighted fraction of occurrence score; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: molecular dynamics; MEFV/pyrin: MEFV innate immunity regulator, pyrin; minPAE: minimum PAE; MSA: multiple sequence alignment; ncLIR: non-canonical LIR; NPC: nuclear pore complex; Nup159: nucleoporin 159; NUP214: nucleoporin 214; OPTN: optineurin; other@LDS: other interaction proximal to the LIR-docking site; PAE: predicted aligned error; PDCD6IP: programmed cell death 6 interacting protein; PDF: probability distribution function; pLDDT: predicted local-distance difference test; PLEKHM1: pleckstrin homology and RUN domain containing M1; PTM: post-translational modification; sAIM: shuffled AIM (ncLIR with shuffled motif); seq.: sequence; SIM: SUMO-interacting motif; SLiM: short linear motif; SMN1/SMN: survival of motor neuron 1, telomeric; ST: phosphomimetic; STBD1: starch binding domain 1; STK3: serine/threonine kinase 3; SUMO: small ubiquitin like modifier; TBC1D2/TBC1D2A: TBC1 domain family member 2; TEX264: testis expressed 264, ER-phagy receptor; TRIM5/TRIM5α: tripartite motif-containing protein 5; UDS: UIM-docking site; UIM: ubiquitin-interacting motif; UIMC1/RAP80: ubiquitin interaction motif containing 1; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; WT: wild type.
在选择性巨自噬/自噬过程中,货物招募由货物或货物受体蛋白中的微管相关蛋白1轻链3(MAP1LC3)/LC3相互作用区域(LIRs)/自噬相关8(Atg8)家族相互作用基序(AIMs)介导。这些基序与吞噬泡膜上的LC3/Atg8蛋白的结合通常受到翻译后修饰的调节,尤其是磷酸化。作为计算LIR预测的一个挑战,序列可能包含短的典型(W/F/Y)XX(L/I/V)基序但却没有功能。相反,LIRs可能由非典型但有功能的序列基序形成。事实证明,AlphaFold2对LIR预测很有用,即使会遗漏一些LIRs,并且含有数千个残基的蛋白质也达到了计算可行性的极限。我们提出了一种基于片段的方法来解决这些局限性。我们发现片段长度和磷酸模拟突变会调节AlphaFold2预测的相互作用。对一系列靶蛋白进行系统的片段筛选,可产生AlphaFold2和AlphaFold3无法预测的全长靶标相互作用的结构模型。我们提供了关于片段选择、序列调整、LC3亚型效应以及最佳LIR筛选评分的指导。最后,我们还测试了这个通用框架对SUMO-SIM相互作用的可转移性,SUMO-SIM相互作用是另一种涉及短线性基序(SLiMs)的蛋白质-蛋白质相互作用:2-HP-LIR:与一个或两个疏水口袋(HPs)结合且带有非典型残基的非典型LIR;AIM:Atg8家族相互作用基序;反平行LIR;AT5G06830/C53(.):类CDK5RAP3蛋白;Atg8/ATG8:分别在酵母和植物中的自噬相关8;ATG8CL:(马铃薯)的类ATG8C;ATG8E:.的ATG8e;平均重原子接触数:重原子接触的平均数;BCL2:BCL2凋亡调节蛋白;BNIP3:BCL2相互作用蛋白3;CALCOCO2/NDP52:钙结合和卷曲螺旋结构域2;钙网蛋白;典型LIR;累积分布函数;CDK5RAP3/C53(.):CDK5调节亚基相关蛋白3;[DE]W[DE]-LIR:TRIM5样非典型LIR;DSK2A:含泛素结构域的蛋白DSK2a;FUNDC1:含FUN14结构域的蛋白1;GABARAP:GABA A型受体相关蛋白;HP0/1/2:疏水口袋0/1/2;与HP0结合的非典型LIR;lcLIR:低置信度LIR(与先前表征的非典型LIR不相似的非典型LIR);LDS:LIR对接位点;LIR:LC3相互作用区域;LO评分:出现评分的长度加权分数;MAP1LC3/LC3:微管相关蛋白1轻链3;MAP1LC3B/LC3B:微管相关蛋白1轻链3β;分子动力学;MEFV/吡啉:MEFV先天免疫调节蛋白,吡啉;最小PAE;多序列比对;非典型LIR;核孔复合体;Nup159:核孔蛋白159;NUP214:核孔蛋白214;视黄醛结合蛋白;LIR对接位点附近的其他相互作用;预测比对误差;程序性细胞死亡6相互作用蛋白;概率分布函数;预测局部距离差异测试;PLEKHM1:含pleckstrin同源结构域和RUN结构域的蛋白M1;翻译后修饰;sAIM:随机排列的AIM(具有随机排列基序的非典型LIR);序列;SUMO相互作用基序;短线性基序;SMN1/SMN:运动神经元存活蛋白1,端粒;磷酸模拟物;STBD1:淀粉结合结构域1;STK3:丝氨酸/苏氨酸激酶3;小泛素样修饰物;TBC1D2/TBC1D2A:TBC1结构域家族成员2;TEX264:睾丸表达蛋白264,内质网自噬受体;TRIM5/TRIM5α:含三联基序蛋白5;UDS:UIM对接位点;UIM:泛素相互作用基序;UIMC1/RAP80:含泛素相互作用基序的蛋白1;ULK1:unc-51样自噬激活激酶1;ULK2:unc-51样自噬激活激酶2;野生型。