Seaborne Robert A E, Moreno-Justicia Roger, Laitila Jenni, Lewis Chris T A, Savoure Lola, Zanoteli Edmar, Lawlor Michael W, Jungbluth Heinz, Deshmukh Atul S, Ochala Julien
Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
J Physiol. 2025 May;603(10):3033-3048. doi: 10.1113/JP288363. Epub 2025 May 5.
Skeletal muscle is a complex syncytial arrangement of an array of cell types and, in the case of muscle-specific cells (myofibres), subtypes. There exists extensive heterogeneity in skeletal muscle functional behaviour and molecular landscape at the cell composition, myofibre subtype and intra-myofibre subtype level. This heterogeneity highlights limitations in currently applied methodological approaches, which has stagnated our understanding of fundamental skeletal muscle biology in both healthy and myopathic contexts. Here we developed a novel approach that combines a fluorescence-based assay for the biophysical examination of the sarcomeric protein, myosin, coupled with same-myofibre high-sensitivity proteome profiling, termed single myofibre protein function-omics (SMPFO). Applying this approach as proof-of-principle we identify the integrated relationship between myofibre functionality and the underlying proteomic landscape that guides divergent, but physiologically important, behaviour in myofibre subtypes in healthy human skeletal muscle. By applying SMPFO to two forms of human nemaline myopathy (ACTA1 and TNNT1 mutations), we reveal significant reduction in the divergence of myofibre subtypes across both biophysical and proteomic behaviour. Collectively we demonstrate preliminary findings of SMPFO to support its use to study skeletal muscle with greater specificity, accuracy and resolution than currently applied methods, facilitating that advancement in understanding of skeletal muscle tissue in both healthy and diseased states. KEY POINTS: Skeletal muscle is a complex tissue made up of an array of cell and sub-cell types, with the resident muscle cell - myofibre - critical for contractile function. Although single myofibre studies have advanced, existing methods lack the precision for simultaneous multidata analysis, hindering developments in our understanding of skeletal muscle. We introduce single myofibre protein function-omics (SMPFO), a method enabling functional analysis of sarcomeric myosin alongside global protein abundance within the same myofibre. In healthy myofibres SMyoMFO reveals extensive biochemical diversity in myosin heads, correlating with the abundance of metabolic and sarcomeric proteins, including subtype-specific patterns in sarcoglycan delta (SGCD). In contrast SMyoMFO uniquely reveals a reduction in diversity of myosin function and the myofibre proteome in two forms of nemaline myopathy, highlighting disease-associated alterations. This innovative approach provides a robust framework for investigating myofibre regulation and dysfunction in skeletal muscle biology.
骨骼肌是由一系列细胞类型组成的复杂合胞体结构,对于肌肉特异性细胞(肌纤维)而言,还包括亚型。在细胞组成、肌纤维亚型和肌纤维内亚型水平上,骨骼肌的功能行为和分子格局存在广泛的异质性。这种异质性凸显了当前应用方法的局限性,这阻碍了我们在健康和肌病背景下对骨骼肌基础生物学的理解。在此,我们开发了一种新方法,该方法将基于荧光的肌节蛋白肌球蛋白生物物理检测与同一肌纤维的高灵敏度蛋白质组分析相结合,称为单肌纤维蛋白质功能组学(SMPFO)。作为原理验证应用此方法,我们确定了肌纤维功能与潜在蛋白质组格局之间的综合关系,该格局指导健康人骨骼肌中肌纤维亚型的不同但具有生理重要性的行为。通过将SMPFO应用于两种形式的人类杆状体肌病(ACTA1和TNNT1突变),我们发现肌纤维亚型在生物物理和蛋白质组行为方面的差异显著减少。总体而言,我们展示了SMPFO的初步研究结果以支持其用于研究骨骼肌,其比目前应用的方法具有更高的特异性、准确性和分辨率,有助于推动对健康和患病状态下骨骼肌组织的理解。要点:骨骼肌是由一系列细胞和亚细胞类型组成的复杂组织,其中驻留的肌肉细胞——肌纤维——对收缩功能至关重要。尽管单肌纤维研究取得了进展,但现有方法缺乏同时进行多数据分析的精度,阻碍了我们对骨骼肌理解的发展。我们引入了单肌纤维蛋白质功能组学(SMPFO),这是一种能够在同一肌纤维内对肌节肌球蛋白进行功能分析并同时分析整体蛋白质丰度的方法。在健康肌纤维中,SMyoMFO揭示了肌球蛋白头部广泛的生化多样性,与代谢和肌节蛋白的丰度相关,包括肌聚糖δ(SGCD)中的亚型特异性模式。相比之下,SMyoMFO独特地揭示了两种形式的杆状体肌病中肌球蛋白功能和肌纤维蛋白质组的多样性降低,突出了疾病相关的改变。这种创新方法为研究骨骼肌生物学中的肌纤维调节和功能障碍提供了一个强大的框架。