文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

推进用于传染病的信使核糖核酸疫苗:关键组成部分、创新与临床进展

Advancing mRNA vaccines for infectious diseases: key components, innovations, and clinical progress.

作者信息

Li Sha, Zheng Lu, Zhong Jingyi, Gao Xihui

机构信息

Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.

出版信息

Essays Biochem. 2025 May 1;69(2):EBC20253009. doi: 10.1042/EBC20253009.


DOI:10.1042/EBC20253009
PMID:40321006
Abstract

Vaccination remains a cornerstone in preventing infectious diseases and managing outbreaks. The COVID-19 pandemic has underscored the revolutionary impact of mRNA vaccine technology, which utilizes pathogenderived genomic sequences to generate specific antigens. This process involves in vitro transcription of mRNA, encoding target antigens that are subsequently encapsulated within lipid nanoparticles (LNPs) for efficient delivery into host cells. Once internalized, the mRNA enables antigen expression, triggering a robust immune response. This platform dramatically accelerates vaccine development timelines and offers unparalleled adaptability, making mRNA vaccines particularly advantageous in addressing emerging infectious diseases. The clinical success of BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) has fueled broader applications, including influenza, respiratory syncytial virus (RSV), Zika, and HIV. Notably, mRNA-1345 became the first FDA-approved RSV mRNA vaccine, while self-amplifying RNA and multivalent vaccines are advancing in trials. However, CureVac's CVnCoV failed due to lack of nucleoside modifications, and mRNA-1325 (Zika) showed poor immunogenicity. Additionally, mRNA-1365 (RSV) faced an FDA clinical hold due to safety concerns. These cases highlight the need for continued optimization in sequence design, delivery, and safety assessment. Despite advancements, a key hurdle persists, including mRNA instability, ultra-low storage requirements, and LNP liver accumulation. Innovations such as lyophilization and selective organ targeting technology are being explored to improve stability extrahepatic delivery. This review examines mRNA vaccine optimization strategies, clinical progress, and challenges, providing insights into future developments in this evolving field.

摘要

疫苗接种仍然是预防传染病和控制疫情的基石。新冠疫情凸显了mRNA疫苗技术的革命性影响,该技术利用病原体衍生的基因组序列来产生特定抗原。这一过程涉及mRNA的体外转录,编码靶抗原,随后将其封装在脂质纳米颗粒(LNP)中,以便有效地递送至宿主细胞。一旦被内化,mRNA就能实现抗原表达,触发强烈的免疫反应。这个平台极大地加快了疫苗研发的时间线,并提供了无与伦比的适应性,使得mRNA疫苗在应对新发传染病方面具有特别的优势。BNT162b2(辉瑞-生物科技公司)和mRNA-1273(莫德纳公司)的临床成功推动了更广泛的应用,包括流感、呼吸道合胞病毒(RSV)、寨卡病毒和艾滋病毒。值得注意的是,mRNA-1345成为首个获得美国食品药品监督管理局(FDA)批准的RSV mRNA疫苗,而自我扩增RNA和多价疫苗正在进行临床试验。然而,CureVac公司的CVnCoV因缺乏核苷修饰而失败,mRNA-1325(寨卡病毒)的免疫原性较差。此外,mRNA-1365(RSV)因安全问题面临FDA的临床搁置。这些案例凸显了在序列设计、递送和安全性评估方面持续优化的必要性。尽管取得了进展,但一个关键障碍仍然存在,包括mRNA的不稳定性、极低的储存要求以及LNP在肝脏中的积累。正在探索诸如冻干和选择性器官靶向技术等创新方法来提高稳定性和肝外递送。本综述探讨了mRNA疫苗的优化策略、临床进展和挑战,为这一不断发展领域的未来发展提供了见解。

相似文献

[1]
Advancing mRNA vaccines for infectious diseases: key components, innovations, and clinical progress.

Essays Biochem. 2025-5-1

[2]
The advent of clinical self-amplifying RNA vaccines.

Mol Ther. 2025-4-3

[3]
Efficacy and safety of COVID-19 vaccines.

Cochrane Database Syst Rev. 2022-12-7

[4]
Revolutionizing immunization: a comprehensive review of mRNA vaccine technology and applications.

Virol J. 2025-3-12

[5]
Detection of SARS-CoV-2-Specific Antibodies in Human Breast Milk and Their Neutralizing Capacity after COVID-19 Vaccination: A Systematic Review.

Int J Mol Sci. 2023-2-3

[6]
Advancing mRNA vaccines: A comprehensive review of design, delivery, and efficacy in infectious diseases.

Int J Biol Macromol. 2025-6-24

[7]
[DNA Vaccine Technologies: Design and Delivery].

Mol Biol (Mosk). 2025

[8]
Discovery and development of a safe and efficient COVID-19 mRNA vaccine, STP2104, using a novel capping library screening method.

Front Immunol. 2025-6-9

[9]
Characterization of the significant decline in humoral immune response six months post-SARS-CoV-2 mRNA vaccination: A systematic review.

J Med Virol. 2022-7

[10]
Risk of myocarditis and pericarditis after a COVID-19 mRNA vaccine booster and after COVID-19 in those with and without prior SARS-CoV-2 infection: A self-controlled case series analysis in England.

PLoS Med. 2023-6

本文引用的文献

[1]
Progress on Respiratory Syncytial Virus Vaccine Development and Evaluation Methods.

Vaccines (Basel). 2025-3-12

[2]
High-density brush-shaped polymer lipids reduce anti-PEG antibody binding for repeated administration of mRNA therapeutics.

Nat Mater. 2025-2-28

[3]
The mRNA-1647 vaccine: A promising step toward the prevention of cytomegalovirus infection (CMV).

Hum Vaccin Immunother. 2025-12

[4]
Advantages of Broad-Spectrum Influenza mRNA Vaccines and Their Impact on Pulmonary Influenza.

Vaccines (Basel). 2024-12-7

[5]
FDA pauses all infant RSV vaccine trials after rise in severe illnesses.

BMJ. 2024-12-23

[6]
Recent advances in drying and development of solid formulations for stable mRNA and siRNA lipid nanoparticles.

J Pharm Sci. 2025-2

[7]
mRNA vaccine sequence and structure design and optimization: Advances and challenges.

J Biol Chem. 2025-1

[8]
Engineered mRNAs With Stable Structures Minimize Double-stranded RNA Formation and Increase Protein Expression.

J Mol Biol. 2024-11-15

[9]
mRNA vaccines for infectious diseases - advances, challenges and opportunities.

Nat Rev Drug Discov. 2024-11

[10]
Safety and immunogenicity of a SARS-CoV-2 mRNA vaccine (SYS6006) in minks, cats, blue foxes, and raccoon dogs.

Front Cell Infect Microbiol. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索