Suppr超能文献

通过机器学习材料空间发现可持续能源材料

Discovery of Sustainable Energy Materials Via the Machine-Learned Material Space.

作者信息

Grunert Malte, Großmann Max, Runge Erich

机构信息

Institute of Physics and Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, 98693, Ilmenau, Germany.

出版信息

Small. 2025 May 5:e2412519. doi: 10.1002/smll.202412519.

Abstract

Does a machine learning (ML) model capture the intrinsic structure of the material space? The example of the OptiMate model, a graph attention network trained to predict the optical properties of semiconductors and insulators, provides an affirmative answer. By applying the UMAP dimensionality reduction technique to its latent embeddings, it is demonstrated that the model captures a nuanced and interpretable representation of the materials space, reflecting chemical and physical principles, without any user-induced bias. This enables clustering of almost 10,000 materials based on optical properties and chemical similarities. Furthermore, it is shown how the learned material space can be used to identify more sustainable alternatives to critical materials in energy-related technologies, such as photovoltaics. These findings demonstrate the dual utility of ML models in materials science: Accurately predicting material properties while providing insights into the underlying materials space. The approach demonstrates the broader potential of leveraging learned materials spaces for the discovery and design of materials for diverse applications, and is easily applicable to any state-of-the-art ML model.

摘要

机器学习(ML)模型能否捕捉材料空间的内在结构?OptiMate模型就是一个例子,它是一种经过训练用于预测半导体和绝缘体光学性质的图注意力网络,给出了肯定的答案。通过将UMAP降维技术应用于其潜在嵌入,证明该模型捕捉到了材料空间的细微且可解释的表示,反映了化学和物理原理,且没有任何用户诱导的偏差。这使得能够基于光学性质和化学相似性对近10000种材料进行聚类。此外,还展示了如何利用所学的材料空间来识别能源相关技术(如光伏)中关键材料的更可持续替代方案。这些发现证明了ML模型在材料科学中的双重效用:准确预测材料性质,同时深入了解潜在的材料空间。该方法展示了利用所学材料空间进行各种应用材料发现和设计的更广泛潜力,并且很容易应用于任何先进的ML模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验