文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于结核病检测与诊断的基于语义分割的自适应卷积神经网络模型。

An adaptive convolution neural network model for tuberculosis detection and diagnosis using semantic segmentation.

作者信息

Salkade Sayali Abhijeet, Rathi Sheetal Vikram

机构信息

Thakur College of Engineering and Technology, Mumbai, India.

出版信息

Pol J Radiol. 2025 Mar 14;90:e124-e137. doi: 10.5114/pjr/200628. eCollection 2025.


DOI:10.5114/pjr/200628
PMID:40321710
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12049158/
Abstract

PURPOSE: Tuberculosis (TB) continues to be a major cause of death from infectious diseases globally. TB is treatable with antibiotics, but it is often misdiagnosed or left untreated, particularly in rural and resource-constrained regions. While chest X-rays are a key tool in TB diagnosis, their effectiveness is hindered by the variability in radiological presentations and the lack of trained radiologists in high-prevalence areas. Deep learning-based imaging techniques offer a promising approach to computer-aided diagnosis for TB, enabling precise and timely detection while alleviating the burden on healthcare professionals. This study aims to enhance TB detection in chest X-ray images by developing deep learning models. We have observed upper and lower lobe consolidation, pleural effusion, calcification, cavity formation and military nodules. A proposed preprocessing technique has been also introduced in our work based on gamma correction and gradient based technique for contrast enhancement. We leverage the Res-UNet architecture for image segmentation and introduce a novel deep learning network for classification, targeting improved accuracy and precision in diagnostic performance. MATERIAL AND METHODS: A Res-UNet segmentation model was trained using 704 chest X-ray images sourced from the Montgomery County and Shenzhen Hospital datasets. Following training, the model was applied to segment lung regions in 1400 chest X-ray scans, encompassing both TB cases and normal controls, obtained from the National Institute of Allergy and Infectious Diseases (NIAID) TB Portal program dataset. The segmented lung regions were subsequently classified as either TB or normal using a deep learning model. A gradient based technique was used for contrast enhancement by capturing intensity changes in image by comparing each pixel with its neighbour with pyramid reduction unique mapping and histogram matching along with gamma correction is used. This integrated approach of segmentation and classification aims to enhance the accuracy and precision of TB detection in chest X-ray images. Classification of segmented images was done using customised convolutional neural network, and visualisation was done using Grad-CAM. RESULTS: The Res-UNet model demonstrated excellent performance for segmentation, achieving an accuracy of 98.18%, recall of 98.40%, precision of 97.45%, F1-score of 97.97%, Dice coefficient of 96.33%, and Jaccard index of 96.05%. Similarly, the classification model exhibited outstanding results, with a classification accuracy of 99.45%, precision of 99.29%, recall of 99.29%, F1-score of 99.29%, and an AUC of 99.9%. Enhanced gradient based method showed ambe of 16.51, entropy of 6.7370, CII of 86.80, psnr of 28.71, ssim of 86.83 which are quite satisfactory. CONCLUSIONS: The findings demonstrate the efficiency of our system in diagnosing TB from chest X-rays, potentially surpassing clinician-level precision. This underscores its effectiveness as a diagnostic tool, particularly in resourcelimited settings with restricted access to radiological expertise. Additionally, the modified Res-UNet model demonstrated superior performance compared to the standard U-Net, highlighting its potential for achieving greater diagnostic accuracy.

摘要

目的:结核病(TB)仍然是全球传染病死亡的主要原因。结核病可用抗生素治疗,但常被误诊或未得到治疗,特别是在农村和资源有限的地区。虽然胸部X光片是结核病诊断的关键工具,但其有效性受到放射学表现的变异性以及高流行地区缺乏训练有素的放射科医生的阻碍。基于深度学习的成像技术为结核病的计算机辅助诊断提供了一种有前景的方法,能够实现精确和及时的检测,同时减轻医疗专业人员的负担。本研究旨在通过开发深度学习模型来提高胸部X光图像中结核病的检测能力。我们观察到上叶和下叶实变、胸腔积液、钙化、空洞形成和粟粒结节。我们还在工作中引入了一种基于伽马校正和基于梯度的技术的预处理技术,用于对比度增强。我们利用Res-UNet架构进行图像分割,并引入了一种用于分类的新型深度学习网络,目标是提高诊断性能的准确性和精确性。 材料和方法:使用从蒙哥马利县和深圳医院数据集中获取的704张胸部X光图像训练Res-UNet分割模型。训练后,将该模型应用于分割从美国国立过敏与传染病研究所(NIAID)结核病门户计划数据集中获得的1400例胸部X光扫描中的肺区域,这些扫描包括结核病病例和正常对照。随后使用深度学习模型将分割出的肺区域分类为结核病或正常。使用基于梯度的技术通过将每个像素与其邻居进行比较来捕获图像中的强度变化,采用金字塔缩减唯一映射和直方图匹配以及伽马校正来进行对比度增强。这种分割和分类的综合方法旨在提高胸部X光图像中结核病检测的准确性和精确性。使用定制的卷积神经网络对分割后的图像进行分类,并使用Grad-CAM进行可视化。 结果:Res-UNet模型在分割方面表现出色,准确率达到98.18%,召回率为98.40%,精确率为97.45%,F1分数为97.97%,Dice系数为96.33%,Jaccard指数为96.05%。同样,分类模型也表现出色,分类准确率为99.45%,精确率为99.29%,召回率为99.29%,F1分数为99.29%,曲线下面积(AUC)为99.9%。基于梯度的增强方法显示出16.51的平均梯度误差(ambe)、6.7370的熵、86.80的对比度改善指数(CII)、28.71的峰值信噪比(psnr)以及86.83的结构相似性指数(ssim),这些结果相当令人满意。 结论:研究结果证明了我们的系统在通过胸部X光诊断结核病方面的效率,可能超过临床医生级别的精确度。这突出了其作为诊断工具的有效性,特别是在难以获得放射学专业知识的资源有限环境中。此外,改进后的Res-UNet模型与标准U-Net相比表现出卓越的性能,凸显了其实现更高诊断准确性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/5d4925b3b949/PJR-90-200628-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/2a7edc299128/PJR-90-200628-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/4daf88d3d463/PJR-90-200628-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/daf9ff27724f/PJR-90-200628-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/e3c49b49993d/PJR-90-200628-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/ba788231fb5a/PJR-90-200628-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/1e06b083c850/PJR-90-200628-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/350cdfcfcb72/PJR-90-200628-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/9995ac64c13f/PJR-90-200628-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/0d6436fae77e/PJR-90-200628-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/592935dc75de/PJR-90-200628-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/5d4925b3b949/PJR-90-200628-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/2a7edc299128/PJR-90-200628-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/4daf88d3d463/PJR-90-200628-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/daf9ff27724f/PJR-90-200628-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/e3c49b49993d/PJR-90-200628-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/ba788231fb5a/PJR-90-200628-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/1e06b083c850/PJR-90-200628-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/350cdfcfcb72/PJR-90-200628-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/9995ac64c13f/PJR-90-200628-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/0d6436fae77e/PJR-90-200628-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/592935dc75de/PJR-90-200628-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c364/12049158/5d4925b3b949/PJR-90-200628-g011.jpg

相似文献

[1]
An adaptive convolution neural network model for tuberculosis detection and diagnosis using semantic segmentation.

Pol J Radiol. 2025-3-14

[2]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[3]
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.

Comput Biol Med. 2021-5

[4]
A comprehensive segmentation of chest X-ray improves deep learning-based WHO radiologically confirmed pneumonia diagnosis in children.

Eur Radiol. 2024-5

[5]
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans.

Diagnostics (Basel). 2022-9-2

[6]
SK-Unet++: An improved Unet++ network with adaptive receptive fields for automatic segmentation of ultrasound thyroid nodule images.

Med Phys. 2024-3

[7]
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images.

Pol J Radiol. 2022-2-28

[8]
Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images.

Diagnostics (Basel). 2024-4-30

[9]
Deep learning assistance for tuberculosis diagnosis with chest radiography in low-resource settings.

J Xray Sci Technol. 2021

[10]
A Novel Approach to the Technique of Lung Region Segmentation Based on a Deep Learning Model to Diagnose COVID-19 X-ray Images.

Curr Med Imaging. 2024

本文引用的文献

[1]
Deep Learning-based Diagnosis of Pulmonary Tuberculosis on Chest X-ray in the Emergency Department: A Retrospective Study.

J Imaging Inform Med. 2024-4

[2]
Early detection of tuberculosis using hybrid feature descriptors and deep learning network.

Pol J Radiol. 2023-9-29

[3]
Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence.

Neural Comput Appl. 2022-4-19

[4]
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images.

Pol J Radiol. 2022-2-28

[5]
Improved Semantic Segmentation of Tuberculosis-Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations.

Diagnostics (Basel). 2021-3-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索