Suppr超能文献

使用卷积神经网络架构和可解释人工智能在胸部X光片中进行肺结核检测。

Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence.

作者信息

Nafisah Saad I, Muhammad Ghulam

机构信息

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia.

出版信息

Neural Comput Appl. 2022 Apr 19:1-21. doi: 10.1007/s00521-022-07258-6.

Abstract

In most regions of the world, tuberculosis (TB) is classified as a malignant infectious disease that can be fatal. Using advanced tools and technology, automatic analysis and classification of chest X-rays (CXRs) into TB and non-TB can be a reliable alternative to the subjective assessment performed by healthcare professionals. Thus, in the study, we propose an automatic TB detection system using advanced deep learning (DL) models. A significant portion of a CXR image is dark, providing no information for diagnosis and potentially confusing DL models. Therefore, in the proposed system, we use sophisticated segmentation networks to extract the region of interest from multimedia CXRs. Then, segmented images are fed into the DL models. For the subjective assessment, we use explainable artificial intelligence to visualize TB-infected parts of the lung. We use different convolutional neural network (CNN) models in our experiments and compare their classification performance using three publicly available CXR datasets. EfficientNetB3, one of the CNN models, achieves the highest accuracy of 99.1%, with a receiver operating characteristic of 99.9%, and an average accuracy of 98.7%. Experiment results confirm that using segmented lung CXR images produces better performance than does using raw lung CXR images.

摘要

在世界上大多数地区,结核病被归类为一种可能致命的恶性传染病。利用先进的工具和技术,将胸部X光片(CXR)自动分析并分类为结核病和非结核病,可以成为医疗保健专业人员进行主观评估的可靠替代方法。因此,在本研究中,我们提出了一种使用先进深度学习(DL)模型的自动结核病检测系统。CXR图像的很大一部分是暗的,无法提供诊断信息,还可能使DL模型产生混淆。因此,在所提出的系统中,我们使用复杂的分割网络从多媒体CXR中提取感兴趣区域。然后,将分割后的图像输入到DL模型中。对于主观评估,我们使用可解释人工智能来可视化肺部受结核病感染的部位。我们在实验中使用了不同的卷积神经网络(CNN)模型,并使用三个公开可用的CXR数据集比较它们的分类性能。CNN模型之一的EfficientNetB3实现了最高准确率99.1%,接收者操作特征为99.9%,平均准确率为98.7%。实验结果证实,使用分割后的肺部CXR图像比使用原始肺部CXR图像具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf15/9016694/84eba20803fe/521_2022_7258_Fig1_HTML.jpg

相似文献

3
Computer-aided COVID-19 diagnosis and a comparison of deep learners using augmented CXRs.
J Xray Sci Technol. 2022;30(1):89-109. doi: 10.3233/XST-211047.
4
Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models.
Front Artif Intell. 2020 Oct 5;3:583427. doi: 10.3389/frai.2020.583427. eCollection 2020.
5
Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks.
IEEE Access. 2020 Jan 28;8:22812-22825. doi: 10.1109/ACCESS.2020.2970023. eCollection 2020.
6
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput Biol Med. 2021 May;132:104319. doi: 10.1016/j.compbiomed.2021.104319. Epub 2021 Mar 11.
7
Deep Learning for Reliable Classification of COVID-19, MERS, and SARS from Chest X-ray Images.
Cognit Comput. 2022;14(5):1752-1772. doi: 10.1007/s12559-021-09955-1. Epub 2022 Jan 11.
8
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images.
Pol J Radiol. 2022 Feb 28;87:e118-e124. doi: 10.5114/pjr.2022.113435. eCollection 2022.
10
MANet: A two-stage deep learning method for classification of COVID-19 from Chest X-ray images.
Neurocomputing (Amst). 2021 Jul 5;443:96-105. doi: 10.1016/j.neucom.2021.03.034. Epub 2021 Mar 18.

引用本文的文献

1
Mobile application prototyping using Artificial Intelligence to support childhood tuberculosis diagnosis.
Rev Bras Enferm. 2025 Jul 11;78(3):e20240398. doi: 10.1590/0034-7167-2024-0398. eCollection 2025.
3
An adaptive convolution neural network model for tuberculosis detection and diagnosis using semantic segmentation.
Pol J Radiol. 2025 Mar 14;90:e124-e137. doi: 10.5114/pjr/200628. eCollection 2025.
4
Tuberculosis detection using few shot learning.
Sci Rep. 2025 Apr 16;15(1):13167. doi: 10.1038/s41598-025-97803-9.
6
Lung image segmentation with improved U-Net, V-Net and Seg-Net techniques.
PeerJ Comput Sci. 2025 Feb 13;11:e2700. doi: 10.7717/peerj-cs.2700. eCollection 2025.
9
Retaking assessment system based on the inspiratory state of chest X-ray image.
Radiol Phys Technol. 2025 Jun;18(2):384-398. doi: 10.1007/s12194-025-00888-0. Epub 2025 Feb 19.
10
Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis.
Comput Struct Biotechnol J. 2024 Aug 12;24:542-560. doi: 10.1016/j.csbj.2024.08.005. eCollection 2024 Dec.

本文引用的文献

1
Medical image-based detection of COVID-19 using Deep Convolution Neural Networks.
Multimed Syst. 2023;29(3):1729-1738. doi: 10.1007/s00530-021-00794-6. Epub 2021 Apr 28.
2
COVID-19 and Non-COVID-19 Classification using Multi-layers Fusion From Lung Ultrasound Images.
Inf Fusion. 2021 Aug;72:80-88. doi: 10.1016/j.inffus.2021.02.013. Epub 2021 Feb 25.
3
Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs.
IEEE Access. 2020;8:27318-27326. doi: 10.1109/access.2020.2971257. Epub 2020 Feb 3.
4
Big data analytics for preventive medicine.
Neural Comput Appl. 2020;32(9):4417-4451. doi: 10.1007/s00521-019-04095-y. Epub 2019 Mar 16.
5
Artificial Intelligence, Radiology, and Tuberculosis: A Review.
Acad Radiol. 2020 Jan;27(1):71-75. doi: 10.1016/j.acra.2019.10.003. Epub 2019 Nov 20.
8
Efficient Brain Tumor Segmentation With Multiscale Two-Pathway-Group Conventional Neural Networks.
IEEE J Biomed Health Inform. 2019 Sep;23(5):1911-1919. doi: 10.1109/JBHI.2018.2874033. Epub 2018 Oct 4.
10
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.
Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验