Nafisah Saad I, Muhammad Ghulam
Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia.
Neural Comput Appl. 2022 Apr 19:1-21. doi: 10.1007/s00521-022-07258-6.
In most regions of the world, tuberculosis (TB) is classified as a malignant infectious disease that can be fatal. Using advanced tools and technology, automatic analysis and classification of chest X-rays (CXRs) into TB and non-TB can be a reliable alternative to the subjective assessment performed by healthcare professionals. Thus, in the study, we propose an automatic TB detection system using advanced deep learning (DL) models. A significant portion of a CXR image is dark, providing no information for diagnosis and potentially confusing DL models. Therefore, in the proposed system, we use sophisticated segmentation networks to extract the region of interest from multimedia CXRs. Then, segmented images are fed into the DL models. For the subjective assessment, we use explainable artificial intelligence to visualize TB-infected parts of the lung. We use different convolutional neural network (CNN) models in our experiments and compare their classification performance using three publicly available CXR datasets. EfficientNetB3, one of the CNN models, achieves the highest accuracy of 99.1%, with a receiver operating characteristic of 99.9%, and an average accuracy of 98.7%. Experiment results confirm that using segmented lung CXR images produces better performance than does using raw lung CXR images.
在世界上大多数地区,结核病被归类为一种可能致命的恶性传染病。利用先进的工具和技术,将胸部X光片(CXR)自动分析并分类为结核病和非结核病,可以成为医疗保健专业人员进行主观评估的可靠替代方法。因此,在本研究中,我们提出了一种使用先进深度学习(DL)模型的自动结核病检测系统。CXR图像的很大一部分是暗的,无法提供诊断信息,还可能使DL模型产生混淆。因此,在所提出的系统中,我们使用复杂的分割网络从多媒体CXR中提取感兴趣区域。然后,将分割后的图像输入到DL模型中。对于主观评估,我们使用可解释人工智能来可视化肺部受结核病感染的部位。我们在实验中使用了不同的卷积神经网络(CNN)模型,并使用三个公开可用的CXR数据集比较它们的分类性能。CNN模型之一的EfficientNetB3实现了最高准确率99.1%,接收者操作特征为99.9%,平均准确率为98.7%。实验结果证实,使用分割后的肺部CXR图像比使用原始肺部CXR图像具有更好的性能。