Braunstein Eric D, Gabriels James K, Ehdaie Ashkan, Yarnitsky Jonathan, Liu Hailei, Ramireddy Archana, Wang Xunzhang, Shehata Michael
Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California.
Cardiovascular Institute, North Shore University Hospital, Manhasset, New York.
Heart Rhythm O2. 2025 Jan 19;6(4):402-409. doi: 10.1016/j.hroo.2025.01.005. eCollection 2025 Apr.
Multipolar mapping, a novel method of electrogram acquisition and annotation distinct from unipolar and bipolar acquisitions, provides orientation-independent near-field signal acquisition with enhanced spatial precision. Multipolar mapping use in humans has not been described.
This study aimed to present findings on the use of multipolar mapping in a variety of different arrhythmia types and mechanisms.
We performed consecutive ablation procedures using a high-density multipolar-capable mapping catheter (OPTRELL, Biosense Webster, Irvine, CA). Parallel mapping using multipolar signal acquisition and conventional bipolar signal acquisition was performed during ablation of various supraventricular and ventricular arrhythmias. Multipolar and bipolar voltage and local activation time maps were compared. A comparison was also made between multipolar, bipolar, and unipolar electrograms in areas of interest.
During ablation to treat atrial fibrillation, atrial tachycardia, accessory pathway, premature ventricular contractions, and ventricular tachycardia, we observed 4 advantages of multipolar mapping compared with traditional bipolar mapping: (1) an improved ability to remove far-field signals while preserving the local waveform, (2) wavefront direction independence, (3) a more accurate representation of voltage, and (4) improved ability to identify the origin of focal arrhythmias.
In this small observational study of multipolar mapping during ablation of various "real-world" arrhythmias, several advantages of multipolar mapping are demonstrated. Larger studies including evaluation of patient outcomes will help further define the benefit of this novel mapping strategy.
多极标测是一种与单极和双极标测不同的新型心电图采集和注释方法,可提供与方向无关的近场信号采集,具有更高的空间精度。尚未有关于多极标测在人体应用的描述。
本研究旨在展示多极标测在各种不同心律失常类型和机制中的应用结果。
我们使用具有高密度多极功能的标测导管(OPTRELL,Biosense Webster,加利福尼亚州欧文市)进行连续的消融手术。在各种室上性和室性心律失常消融过程中,并行使用多极信号采集和传统双极信号采集进行标测。比较多极和双极电压及局部激动时间图。还对感兴趣区域的多极、双极和单极心电图进行了比较。
在消融治疗心房颤动、房性心动过速、旁路、室性早搏和室性心动过速期间,我们观察到与传统双极标测相比,多极标测有4个优点:(1)在保留局部波形的同时去除远场信号的能力提高;(2)波前方向独立性;(3)电压表示更准确;(4)识别局灶性心律失常起源的能力提高。
在这项关于各种“实际”心律失常消融过程中多极标测的小型观察性研究中,展示了多极标测的几个优点。包括评估患者预后的更大规模研究将有助于进一步明确这种新型标测策略的益处。