Suppr超能文献

一项旨在对预测模型进行基准测试并揭示长期卒中预后机制多样性的全球努力。

A global effort to benchmark predictive models and reveal mechanistic diversity in long-term stroke outcomes.

作者信息

Matsulevits Anna, Alves Pedro, Atzori Manfredo, Beyh Ahmad, Corbetta Maurizio, Pup Federico Del, Dulyan Lilit, Foulon Chris, Hope Thomas, Ioannucci Stefano, Jobard Gaël, Lemaître Hervé, Neville Douglas, Nozais Victor, Rorden Christopher, Saprikis Orionas-Vasilis, Sibon Igor, Sperber Christoph, Teghipco Alex, Thirion Bertrand, Tshimanga Louis Fabrice, Umarova Roza, Vaidelyte Ema Birute, van den Hoven Emiel, Rodriguez Esteban Villar, Zanola Andrea, Tourdias Thomas, de Schotten Michel Thiebaut

机构信息

Groupe d'Imagerie Neurofonctionnelle Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France ; Brain Connectivity and Behaviour La.

Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa.

出版信息

Res Sq. 2025 Apr 17:rs.3.rs-6254029. doi: 10.21203/rs.3.rs-6254029/v1.

Abstract

Stroke remains a leading cause of mortality and long-term disability worldwide, with variable recovery trajectories posing substantial challenges in anticipating post-event care and rehabilitation planning. To address these challenges, we established the NeuralCup consortium to benchmark predictive models of stroke outcome through a collaborative, data-driven approach. This study presents findings from 15 international teams who used a comprehensive dataset including clinical and imaging data, to identify and compare predictors of motor, cognitive, and emotional outcomes one year post-stroke. Our analyses integrated traditional statistical approaches and novel machine learning algorithms to uncover 'optimal recipes' for predicting each domain. The differences in these 'optimal recipes' reflect distinct brain mechanisms in response to different tasks. Key predictors across all domains included infarct characteristics, T1-weighted MRI sequences, and demographic factors. Additionally, integrating FLAIR imaging and white matter tract analysis significantly improved the prediction of cognitive and motor outcomes, respectively. These findings support a multifaceted approach to stroke outcome prediction, underscoring the potential of collaborative data science to develop personalized care strategies that enhance recovery and quality of life for stroke survivors. To encourage further model development and validation, we provide access to the training dataset at http://neuralcup.bcblab.com.

摘要

中风仍然是全球范围内导致死亡和长期残疾的主要原因,恢复轨迹的多样性给预测事件后的护理和康复计划带来了巨大挑战。为应对这些挑战,我们成立了NeuralCup联盟,通过协作式、数据驱动的方法对中风预后预测模型进行基准测试。本研究展示了来自15个国际团队的研究结果,这些团队使用了一个包含临床和影像数据的综合数据集,以识别和比较中风后一年运动、认知和情感预后的预测因素。我们的分析整合了传统统计方法和新颖的机器学习算法,以揭示预测每个领域的“最佳方法”。这些“最佳方法”的差异反映了对不同任务做出反应的不同脑机制。所有领域的关键预测因素包括梗死特征、T1加权MRI序列和人口统计学因素。此外,整合液体衰减反转恢复(FLAIR)成像和白质束分析分别显著改善了认知和运动预后的预测。这些发现支持了一种多方面的中风预后预测方法,强调了协作数据科学在制定个性化护理策略以提高中风幸存者的恢复能力和生活质量方面的潜力。为鼓励进一步的模型开发和验证,我们在http://neuralcup.bcblab.com提供训练数据集的访问权限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9d/12047981/13555bce2baf/nihpp-rs6254029v1-f0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验